US 20070239773A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2007/0239773 A1l

Rojer 43) Pub. Date: Oct. 11, 2007
(54) MODULE SPECIFICATION LANGUAGE AND 57 ABSTRACT
META-MODULE A language for the specification of object-oriented modules
) . is disclosed. A meta-module for representation of module
(76) Inventor: Alan S. Rojer, Maplewood, NJ specifications as object-oriented data structures is disclosed.
(Us) A parser for the language converts a human-readable textual
expression compatible with the grammar of the language to
Correspondence Address: an object-oriented data structure composed of instances of
DIMELAB, LLI.C the classes specified in the meta-module. A module speci-
BOX 336 fication may include class specifications, host members
MAPLEWOOD, NJ 07040-0336 specifications, and module predicates specifications. Class
specifications may include class member specifications,
(21) Appl. No.: 11/786.299 class predicates specifications, and class specifications.
’ Member specifications may include datum specifications
o and method specifications. Datum specifications include
(22) Filed: Apr. 11, 2007 type specifications and optional datum predicate specifica-
L. tions. Method specifications include type specifications,
Related U.S. Application Data argument specifications, and optional method predicate
(60) Provisional application No. 60/791,011, filed on Apr. spec.lﬁcatlons. Argument spemﬁcatlons.mclude type speci-
B S fications and optional argument predicate specifications.
11, 2006, provisional application No. 60/791,097,
Type specifications include value type specifications, refer-
filed on Apr. 11, 2006. : . . .
ence type specifications, and compound type specifications.
Compound type specifications include sequence type speci-
Publication Classification fications, set type specifications, and map type specifica-
tions. Predicate specifications include qualifier specifica-
(51) Int. CL tions, singleton specifications, and plurality specifications.
GOG6F 7/60 (2006.01) Singleton specifications include an object specification. Plu-
rality specifications include one or more object specifica-
(52) US. CL oot 707/102 tions.
1000
1002 1008 1010, 1912 code || 1004
e i generator
specification = parser @)
docs
1014 generator
1006

generator

Patent Application Publication Oct. 11,2007 Sheet 1 of 22 US 2007/0239773 A1

FIG. 1

1000 _

1004
1002 1008 1010, 1912~/ code | |
generator
specification)—=| parser @
-~ 1014 generator 006

generator

FIG. 2

dish!®® [host dishHost!0!®)
Sequence<dishModule!®?%s modules®® [meron);
Sequenée<dish'1‘ype1°5‘> types!??? [meron] ;
dishElement!0%¢ ¢
dishEntity?0?® {
dishModule!®?® {
Sequence<dishClass'®®> classes!®® [meron];
Sequence<dishClass!®%> forward classes!®3?
dishHostClass'®? host!®* [meron);
}
dishClass'®® (_
Sequence<dishMember!%%s> members?038 [meron] ;
dishHostClass!®4? () '

[meron}] ;

}
dishOperand®®? {
dishargument!?4? (3
dishMember!?%€¢
dishMemberFunction®® { .
Sequence<dishArgument!®?s arguments!®®® [meron]:

}
dishMemberDatum!®®? {}

Patent Application Publication Oct. 11, 2007 Sheet 2 of 22 US 2007/0239773 A1

FIG. 3

dish!®6. .. .dishElement!%?4 {
dishTypel®? {
dishvVoidType!®® (}
dishvalueType!®®® {
dishBitTypel®®® ()
dishInteger’I‘ype1062 {1}
dishCardinalTypel®® {}
dishTextType!®® {}
}
dishReferenceTypel®®® ()
dishCompoundType!®”® {
dishSequenceType!®’? {
" dishvalueSequenceType
dishReferenceSequenceType

1074 {}
1076 {}

}

dishSetType
dishvValueSetTypel!®®® (3
dishReferenceSetTypel®®? (}

1078 {

}

dishMapTypel®® {
dishIndexMapTypel®®® ()}
dishScaleMapType!®®® ()
dishBindMapType!®?? (3}
dishConvertMapType!®®? ()

}

dish'®® { dimeLogger!®®® } ()

FIG. 4

class dishHost!%® {(

public: // features...
Sequence<dishModule!®?®*> modules?®??;
dishModule!??®* module!®?®(Text t);
Map<Text, dishModule!®?®*> module_index
Boolean accept_module!?(dishModulel!®?®* m);
Sequence<dish'1‘ype1°54*> typeswzz;
Boolean accept_type!!®? (dishTypel®?* arg 0);

1098,
!

Patent Application Publication Oct. 11,2007 Sheet 3 of 22 US 2007/0239773 A1

FIG. 5

class dishElement!%? ¢
public: // features...
Text source1104

};

FIG. 6

class dishEntity!0??¢ 1024 ¢

public: // features...
- Text jgios.
. Text te:u:m1108
Text titlel!l?;
Text purpose1112
Text passage1114
Sequence<Text> remarks!il®.
Sequence<Text> notesll18

public dishElement

Patent Application Publication Oct. 11,2007 Sheet 4 of 22 US 2007/0239773 A1

FIG. 7

class dishModulel®®® . public dishEntity!%?% {
public: // features...
Sequence<dishClass®6*> classes
Map<Text, dishClass!®*®*> class_index!'?";
Boolean accept_class!!??(dishClass'®®* ¢);
dishClass!®®* resolve_class!!?®*(Text id);
Boolean sort_classes!!?® (dimeLogger®®* arg 0);
Sequence<dishClass'®f*> forward_classes'®??;
Boolean accept_forward_class''?®(dishClass'®3¢* f);
" Sequence<dishClass!®®*> root_classes!!??;
dishHostClass'?%* nhost!034;
Boolean accept_host!'??(dishHostClass!®%* h);
Text viewer_ig!1%; '
Text editor_id!!e;
Text factory id'*?;
Text factory_root_id*!4%;
Text auditor_id!'*¢;
Text reflector_id!?¢,;
Text parser_id!!48;
Text resolver_id''%?;
Text resolver_root_id*'®4;
Text resolver_id_field'!%?;
Text acceptor_iduSG;
Text predicator_id!1%;
Text qualifier_ id!%%();
Text singleton_id!%%() ;"
Text plurality_id'®¢();
Text predicator_sequence_id!®¢() ;
Text promissary reference_id'!%®();
Text depository_id*’%();
Text predicator_host_id''"?;
public: // cleanup...
virtual ~dishModulel®®() {
/* ‘cleanup classes!®? */
/* cleanup forward_classes
/* cleanup host!93? */ 3

1030,
’

1032 /

}:

Patent Application Publication Oct. 11, 2007 Sheet 5 of 22 US 2007/0239773 A1

FIG. 8

class dishClass'®® : public dishEntity!026 {
public: // features...
dishModule!®?®* modulell’4;
Sequence<dishClass!®%*> generall’s;
Sequence<dishMember!®%*> members!®3®;
Map<Text, dishMember!®$*> member index!!’®;
Sequence<dishClass!®*®*s> gpecies!!®?;
Sequence<dishClass'®®*> genera_closure!!®?;
Sequence<dishClags!®36+> species_closure!l®?;
Boolean is_module_root!!8¢,;
Boolean constructs_markup_element!!®;
Boolean accepts_markup_element!!?0;
Boolean accepts_markup_text!!??;
Boolean accepts_markup_predicatel!?;
Boolean markup_configure!!?s;
Boolean markup_commit!!®8,;
Boolean is_pure_abstract?!?%0,
Boolean accept_member’??? (dishMember®* arg 0);
Boolean provides_downcast'?%;
Sequencé<Text> tags!?0s;
Text acceptor_host_id!?%8 (),
Sequence<Text> audit_requirements!?'?;
Text_ auditor_context!?!;
public: // cleanup...
virtual “~dishClass!®®() {
/* c¢leanup membersi®® +/)} -
}i :

FIG. 9

class dishHostClass!?0 . public dishClass!®® (};

FIG. 10

class dishOperand!®? : public dishEntity0%® {
public: // features...
Text scope_handlel?!f;
Boolean validate_handle*?!®(Text h);
Boolean acceptmscope_handlelno(Text h);
Text scope_id!???;
Boolean is_const!??4;

dishTypel®®* typel??s,

Patent Application Publication Oct. 11,2007 Sheet 6 of 22 US 2007/0239773 A1

FIG. 11

1044 d}042 {

class dishArgument
public: // features.
Cardinal position
Text arg_defau1t123° :

};

: public dishOperan

1228

FIG. 12

:class dishMember!®® . public (‘JlishOperand1042 {

public: // features. - :
dishClass!®36+ member class!???;

};

FIG. 13

class dishMemberFunction'®®® : public dishMember!®*® [
public: // features. '
Boolean is statlc1234 .
Boolean is v1rtua11236,
Boolean J.s_pure1238
Sequence<dlshArgument1°“*> arguments
Sequence<Text> inline_. definition!??;
Sequence<Text> definition!?4?;
Text indicates®?*;
public: // cleanup...
virtual ~dishMemberFunction!®8() {
/* cleanup arguments®?® */ }

1050

.};

Patent Application Publication Oct. 11, 2007 Sheet 7 of 22 US 2007/0239773 A1

FIG. 14

class dishMemberDatum!®®? ; public dishMemberl®%¢ |
public: // features...
Boolean is_meron!?%f;
Boolean is_mutablel?¢8,;
Text init!?3°; ‘
Text predicator_class_id!?%?();
Text promissary_class_id'??*();
Text acceptor_class_id!?®%();
Text generic_acceptor_id'?%%();
dishMemberFunction!®®* acceptor!?t?;
Boolean inhibit_predicator!?6?,
Sequence<Text> tags!?®;"”’
Sequence<Text> handles!?¢;
Boolean accept_handle’?%® (Text t);

};:

FIG. 15

class dishType'®* : public dishElement%?® {
public: // features...
Text type_text?7%();
Boolean is_plurall?’?();
}:

FIG. 16

class dishVoidTypel!®® : public dishTypel!® [

public: // features... ’
Text type_text!?’4();

}; o

Patent Application Publication

FIG. 17

class dishvalueTypel?®

FIG. 18

Oct. 11, 2007 Sheet 8 of 22

: public dishType!®? {();

class dishBitType!®®? . public dishvalueType!®® {

public: // features...
Text type_text!?7%();
};

FIG. 19

class dishIntegerType1062

public: // features...
_Text type_text!?'®();
Y

FIG. 20

class dishCardinalType
public: // features...

Text type_text!?80();
}i

FIG. 21

class clishText'I‘ypem66

public: // features...
Text type_text!?®?();
¥
FIG. 22

class dishReferenceType
public: // features...

1064 °

1068

: public dishvalueType!®®® {

: public dishvalueType!?®® {

: public dishvalueTypel®? {(

: public dishTypel®* [

Text reference_class_id??®¢;

Text type_textmssﬂ;
Y:

US 2007/0239773 Al

Patent Application Publication Oct. 11,2007 Sheet 9 of 22 US 2007/0239773 A1

FIG. 23

class dishCompoundType'®”® : public dishTypel®* [
public: // features...

Sequence<dishTypel®**> parameters!?ss;

Text type_text!?*?();

Text compound_textugzﬂ;

Boolean is_plurall?®();

dishTypel®4* range'?®¢;
};

FIG. 24

class dishSequenceType'®’? : public dishCompoundTypel®”® {
public: // features...

Text compound_textn980;
}:

FIG. 25

class dishvValueSequenceType'®™® : public dishSequenceTypel®’?
public: // features...

dishvalueTypel?8* value_range!3°?;

}i :

FIG. 26

class dishReferenceSequenceTypel®”’® : public dishSequenceType!®’? [
public: // features...

dishReferenceTypel®®* reference_range!3%?;

};

Patent Application Publication Oct. 11,2007 Sheet 10 of 22 US 2007/0239773 Al

FIG. 27

class dishSetType!®”® . public dishCompoundType?®”? {
public: // features,.. :

Text compound_text!3%(};

}i ' o

FIG. 28

class dishvalueSetType'?®® : public dishSetTypel?’® {
public: // features...
dishvalueType!®®* value_range!3%;

};

FIG. 29

class dishReferenceSetType'®®? . public dishSetType!?’® {
public: // features...

dishReferenceType'’®®* reference_range'*;
Y

Patent Application Publication Oct. 11,2007 Sheet 11 of 22 US 2007/0239773 Al

FIG. 30

class dishMapType!®® : public dishCompoundTypel!?”® {
public: // features... '
dishTypel®** domain?3!?;

Text compound_text!3'?();

}; ‘

FIG. 31

1086 1084 {

class dishIndexMapType
public: // features...
dishvalueType!?38+ vélue_domain
dishReferenceType!008* reference_range!3!$;

: public dishMapType

1314,
r.

};

FIG. 32

class dishScaleMapType'®®® : public dishMapType!®® |
public: // features...
dishReferenceType!®®®* reference_domain!?!®;
dishvalueTypel®8* value_rangelno;
}:

FIG. 33

class dishBindMapType!®®? . public dishMapType!®® (
public: // features...
dishReferenceTypelMs* reference_domain®3??;
dishReferenceType!®®®* reference_range!*?¢;

};

FIG. 34

class dishConvertMapType'®®? : public dishMapType!®®* {
‘public: // features...
dishvalueType!®®®* value_domain!3?¢;
dishValueTypelMB* value_rangeHZ%
}s

FIG. 35

class dimeLogger!®? (3;

Patent Application Publication Oct. 11,2007 Sheet 12 of 22 US 2007/0239773 Al

FIG. 36
1002 Lexer INITIAL™* Matches

Match | Regexp Terminal ' Responder Next
1356 #.%$
1358 [\tl+
1360 \n newline!36?
1364 miy® . SCOPE!3%6
1368 "y OPEN_CURLY!370

11372 "y ' CLOSE_CURLY}7!
1376 ne 'OPEN_SQUARE””
1380 "y CLOSE_SQUARE!3#2
1384 ") OPEN_PAREN!386
1388) CLOSE_PAREN!*%°
1392 nen - OPEN_ANGLEL3%
1396 " CLOSE_ANGLE!*®
1400 A SEMICOLON'"

1404 mn COMMA1408
1408 AL quote_open'*!® | DOUBLE_QUOTE'**°
1412 new quote_open?!® | SINGLE_QUOTE!?S?
1414 LEa quote_open**!® | MULTI_QUOTE!3>¢
1416 [Vv]oid . yoIphie " | void_type!#??
1422 [Iilnt(eger)? INTL424 int_type!!?®
1428 [Bbjit|[Bblool{ean)? [BIT3® bit_typel!?3?
1434 [Cclard{inal)? CARD!436 card_type!*’®
1440 [Tt]ext (ual)? TEXT! 442 text_typel?tt
1446 [ss] et SET!448
1450 [Mm] ap Mapl452
1454 - [Ss)eg(uence)? SEQ* 43¢
1458 la-zA-20-9_]+ 1D ' igle
1464 | . . bad_char'466

Patent Application Publication

Oct. 11,2007 Sheet 13 of 22

US 2007/0239773 Al

FIG. 37
1002 Predicate Relations (1/2)
Match | Regexp Terminal Responder
1468 acceptor SINGLETON70 acceptor_predicate!*??
1474 acceptor-id SINGLETON!470 acceptor_id_predicate!?’t
1478 accept-element QUALIFIER480 accepts_markup_element_predicatel48?
1484 accept-predicate QUALIFIER!480 accepts_markup_predicate_predicatel4®®
1488 accept-text QUALIFIERM™®® | accepts_markup_text_predicatelt9? ‘
1492 default V SINGLETON¢7? arg_deféult_predicate““. ‘
1496 predicator SINGLETON47¢ predicator_id_predicate!*®®
1500 audit PLURALITY!S02 audit_requir;aments_predicate““
1506 require' PLURALITY!%02 audit_requirements_predicate!®%
1508 auditor-context SINGLETON47° auditor_context_predicate!50
1512 auditor SINGLETON'?® | auditor_id_predicate!5!t
1516 constrgct—element QUALTIFIER80 const:ruc:t:s_markup_e].en'tent:_prec'l:»i.cat:e1518
1520 definition . PLURALITY?®® | definition_predicate!5??
1524 editor éINGLETONlUb editor_id_predicatel?®
1528 factory SINGLETON'" | factory_id_predicate!5®®
1532 factory-root SINGLETON470 factory_root_id_predicatel5*
. 1536 forward PLURALITY!592 fo::'ward_classes_predicaté1535
1540 handle PLURALITY'*®? | handles _predicate!5¢? ‘
1544 handles PLURALITY'®® | handles_predicate!®?
1546 host SINGLETON470 host_pred'icatels‘8
1550 indicates SINGLETON'® | indicates_predicate'®
" 1554 inhibit-predicator | QUALIFIER™® | inhibit_predicator_predicate!s5
1558 init SINGLETON*470 init_predicatels%®
1562 inline PLURALITYlSOZ inline_definition_predicatel%%¢

Patent Application Publication

Oct. 11,2007 Sheet 14 of 22

FIG. 38
1002 Predicate Relations (2/2)
Match | Regexp Terminal Responder
1566 const QUALIFIER!48? is_cc:;nst'_predicatem"‘3
1570 meron QUALIFIER!®® | is_meron_predicate!®’?
1574 mutable QUALIFIER!48? is_mutable_predicatel!®’¢
1578 pure QUALIFIER™® | is_pure_predicate!®®®
1582 static QUALIFIER'®® | is_static_predicate!®®
1586 virtual QUALIFIERM® | is_virtual_predicate!S8®
1590 commi t QUALIFIER'®® | markup_commit_predicate!5®?
1594 configure QUALIFIER® | markup_configure_predicate!®’®
1598 note PLURALITY*®** | notes_predicate!®?®
1602 n-otes PLURALITY!%0? notes_predicate®®®?
1604 parser SINéLETON“” parser_id_predicate®®°®
1608 passage SINGLETON'*’® | passage_predicate!6!?
1612 downcast QUALIFIER'*8? . Aprovides_downcast:_predicate“”‘I
1616 purpése SINGLETON'*"° | purpose_predicate!6!?
1620 reflector SINGLETON47® r_eflect:or__id_pz:edic.=.~.t'.=.1'522
1624 remark PLURALITY!*®? | remarks_predicate!®?®
1628 remarks PLURALITY'*®? | remarks_predicate!6?6
1630 resolver SINGLETON*47° res,olver__id_predicat:e1632
1634 resolver-id-field | SINGLETON''® | resolver_id_field predicate!®
1638 resolver-root SINGLETON479 _ resolver_root_id_predicate1“°
1642 tag PLURALITY!®" | tags_predicate!®!
1646 tags PLURALITY*®®? | tags_predicate!®
1648 term SINGLETON'*"® | term_predicate!®®?
1652 title SINGLETON'¥7® | title_predicate!®s*
1656 viewer SINGLETON47® viewer_id_predicat:e1658

US 2007/0239773 Al

Patent Application Publication

FIG. 39

FIG. 40

1002 Lexer DOUBLE_QUOTE!?>® Matches

Oct. 11, 2007 Sheet 15 of 22

US 2007/0239773 Al

Match | Regexp | Terminal | Responder Next
1660 ARA QUOTE! 62 quote_closelt INITIAL!4®
1666 AN\ escape_doublequote!f6®
1670 "\\n" escape_newlinel672
1674 "\\t" escape_tab'®’*
© 1678 AN escape_escapel®®?
1682 \n quote_newline!%8¢
1686 quot:e_a<.:cum1,1lat:e1688
1002 Lexer SINGLE_QUOTE™*5? Matches
Match | Regexp | Terminal | Responder Next
1690 " QUOTE1662 quote_closel®® INITIAL!3¢®
1692 AN . escape_singlequotelf??
1696 "\\n" escape_newline!®7?
1698 "\\t" escape_tab'®7"
1700 AN escape_escape?58?
1702 \n quote_newline!®®*
1704 quote_accumulate!®®®

Patent Application Publication

FIG. 41

Oct. 11,2007 Sheet 16 of 22

US 2007/0239773 Al

1002 Lexer MULTI_QUOTE** Matches

" Match | Regexp | Terminal | Responder Next
1706 | o 3 QUOTE!62 quote_closel®® INITIAL!34®
1708 AN escape_backquote!”1?
1712 "\\n" e.'s'cape_newline1672
1714 "\\t" escape_tab!®7®
1716 ' AN escape_escape!680
. 1718 \n accum_newline!’??
1722 quote_accumulate?®®®

Patent Application Publication

FIG. 42

1002 Grammar Rules (1/5)

Oct. 11,2007 Sheet 17 of 22

US 2007/0239773 Al

Rule | Production Responder
1724 start!’? . . - N
1728 startl’?® start!’2¢ modulel?30 accept_modulel?32
1734. | start!™® . gtart!’?® scoped class!’?®
01738 | module®® : module_body'’*® CLOSE_CURLY!"
1742 module_body!’4?
"ID'%® optional_predicatesl’** OPEN_CURLY!370 new_module!’4¢
1748 module_body'’® : module_body'’*? class!’s? rnodvale_accep‘.:_class1752
1754 module_body'”4? module_body'’4? members!?ss module_accept_members!’s®
1760 module_body'™® : module_body'’*® predicatesi’5? module_accept_predicates!’®
1766 scoped_class!’ .
sceped_class_body!’6® C'LOSE_CURLY”"‘1
177 0 scoped_c]..ass_body17 68
ID}% sCoPE!*®® 1DM60 opEN_CURLYI? - resolve_scoped_class'’"?
1774 scoped_class_body! 768 |
scoped_class_body'’®® class!?>° class_accept_class!’’®
1778 scoped_class_body!’%® ‘
scoped_class_body'’% members!?®¢ class_accept_members!78®

Patent Application Publication

FIG. 43

1002 Grammar Rules (2/5)

Oct. 11, 2007 Sheet 18 of 22

US 2007/0239773 Al

Rule | Production Responder
1782 class!™® . class_body'’® CLOSE_CURLY'?7¢
1786 class_body'"8

TD60 optional_predicates”“ OPEN_CURLY!"? new_class!?%8
1790. | class_body'’® : class_body'’® class!’®® clas:'s_accept_cl.a\ss1776
1792 class_boély1784 class_body”'34 membe:r:bs1756 class_accept_members”ao
1794 class_body!'78 class_body!7® pred:i.cat:e.s1762 class_acc.ept_predicates”“
1798 members!’3® . members__boclymoo SEMICOLON!402
1802 members_bodyMOO : typemo“ member 806 new_me.mbers1808
1810 members_body?® :

members_body?#° comMmal4%® memberts append_membersmu'
1814 | member!8% datum!®€
1818 member!806 method!82®
1822 datum?!®6 . pl460 optional predicatesl’® new_datum!®?*
1826 met:hod“{20 1D argslee® optional_predicateslé“ new_method!®3°
1832 args'®?® . OPEN_PAREN'*®® CLOSE_PAREN!3?? empty_argsi®
1836 args?®® . args_body'®*® CLOSE_PAREN3%®
1840 args_body!'®® OPEN_PAREN*3%¢ argl84? new_args'84
1846, args_body'®® : args_body*®*® comMal¢0® arg!®? append_args'®®
1850 arg'®? ;. type!®™ op_titsnal_predicates”“ nlew__mo‘d_arg1352
1854 arg!8? type!®® 1D1%0 optional_predicates!’ new_mod_arg_dummy'8>¢

Patent Application Publication

FIG. 44

Oct. 11, 2007 Sheet 19 of 22

US 2007/0239773 Al

1002 Grammar Rules (3/5)

Rule | Production Responder
1858 optional_predicates!™4 empty_predicatesi®&®
1862 optional_predicates!’? : predicates!’®?
1864 predicates!’ : predicates_body*® CLOSE_SQUARE!®®?
1868 predicates_body'®®® : OPEN_SQUARE!’’® predicate!8’ new_predicates!®’?
1874 predicates_body!856

‘ prédicates_bo‘cily1866 SEMICOLON*? predicatel!®?? append_predicate!®’®
1878 predicates_body1866 : predicates_body*®®® SEMICOLON!4?2
1880 predicate’®® : qualifier!®?
1884 predicate!®”® : gingleton!®e
1888 predicate!®? plurality!®?
1892 qualifier!®? QUALIFTER!48¢
1894 singleton!®®s SINGLETON'*"? object1896 singleton_object8?8
1900 plurality'®® . pLURALITY!5®? objectlé% plurality object!®0?
1904 plurality!®? . plurality“”‘_’ COMMA%6 object1896 pluralil:y_append_ob:iec't:1906
1908 plurality?®® . plurality!®°® commalt®s
1910 object!® . text!®?
1914 object6 . object!®?® texti®l? append_object_text!®16
1918 | text!®2 ; ppltsd ‘
1920 text!?1? QUOTE*#52

Patent Application Publication

FIG. 45

Oct. 11,2007 Sheet 20 of 22 US 2007/0239773 Al
1002 Grammar Rules (4/5)
Rule | Production ' Responder
1922 type!®® . voIp'®
1924 type!®® . compound_type!®%®
1928 type!®® . reference_type!®*?
1932 typelf® value_type!®3*
1936 reference_type!?*® : 1Ip'48° reference_type!?3®
1940 va:l.ue_typelﬂ'1 : BITM3
1942 value_type®®3* : 1INT!M
1944 value_type!??* : CaARD!*3¢
1946 value_type!®3* : TEXT!%?

Patent Application Publication Oct. 11,2007 Sheet 21 of 22 US 2007/0239773 Al
FIG. 46
1002 Grammar Rules (5/5)
Rule | Production Responder
1948 compound_type!??®

1952

1956

1960

1964

1968

1972

1976

SEQ!*5 OPEN_ANGLEM™ reference_type!®*® CLOSE_ANGLE!?®®

compound_typel??t

SEQ'%¢ OPEN_ANGLE'*®* value_type'®?* CLOSE_ANGLE!®®
compound_type!??¢

SETM48 OPEN;ANGLEHM reference_typel®® CLOSE_ANGLE!3?®
compound_type!?2¢
SET*4® OPEN_ANGLE* value_type!®?* CLOSE_ANGLE!?®®
compound_type!??$
MAP'*52 OPEN_ANGLE®™ value_type!®* commal4%®
refer:ence_type1930 CLOSE_ANGLE1398
compound_type!?%¢
MAPH5?2 OPEN_ANGLE'?®* value_type!??* commalé®s
value_typelgu CLOSE_AT-\I\IGLE1398
compc»und_type1926
MAP'32 OPEN_ANGLE!?* reference_type'®? commMal4os
reference_t:ype‘1930 CLOSE_ANGLE!39®
ccmpound__t:y}::e1926 ‘
MAPM52 OPEN_ANGLEY™ reference_type'®® commal¢®s

value_typew“ CLOSE_ANGLE!???

-value_set_type

reference_seq_type1950

value_seq type!®s?

reference_set_type'®>®

1962

iru:'lex_m.a\p_t:ype1966

convert_map_type!®’?

1974

bind_map_type

scale_map_type!®’®

Patent Application Publication Oct. 11,2007 Sheet 22 of 22 US 2007/0239773 Al

FIG. 47

example module specification...
mscan'®®® [# example module predicates specification...
example singleton predicate specification...
host [mscanHost];
viewer [mscanViewer]
1 (
example host member specification...

Set<mscanFile!®®> _root_files'®®? [meron]: '
example class specification...
mscanFile!?®? {
example class members specification...
msca»nDirectory1986 _parent!??s;

Text _name!??®,;

example class specification, indicating specialization...
mscanDirectory'?® :
example class members specification,
example member specification with member predicates specification...
Set<mscanFile!®®> _fi1es2°% [meron]:
mscan’I‘opDirectory1988 {}
}
mscanRegularFile
mscanAudioFilel?? (}.
mscanVideoFile!?¢ (}

}

1990 {

US 2007/0239773 Al

MODULE SPECIFICATION LANGUAGE AND
META-MODULE

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit of PPA Ser. No.
60/791,011 filed 2006-04-11 by the present inventor, and
PPA Ser. No. 60/791,097 filed 2006-04-11 by the present
inventor, the disclosure of which is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

[0002] This invention relates particularly to the specifica-
tion of modules for object-oriented programming, and gen-
erally to software development tools generating object-
oriented programming language code.

[0003] Object-oriented programming enjoys great popu-
larity among programmers. However, in the development of
a complex system, the programmer must attend to a vast
collection of details. These details may easily obscure and
complicate large-scale considerations of the interactions
within and between program elements. Hence it would be
beneficial to have the use of tools which reduce complexity
by automatically handling various details, which may then
be suppressed in favor of concise expressions of large-scale
interactions.

[0004] Object-oriented programming tends to focus on
classes, since classes are the most important component in
object-oriented programming languages. In many applica-
tions, however, significant benefits may be gained by con-
sidering modules, which include collections of interrelated
classes. Modules typically incorporate classes which are
closely related to domain-specific categories. Relationships
of generalizations and specialization among domain catego-
ries may be reflected in derivation relationships between
categorical classes. It would be beneficial for modules to
also include non-categorical classes which are specialized
for hosting and processing data structures composed of
instances from the categorical classes. It would also be
beneficial to coordinate and systematize categorical and
unitary non-categorical classes to enhance developer pro-
ductivity, further relieving the developer from excessive
attention to tedious details.

[0005] The problems of specifying suitable representa-
tions have led to enormous efforts in the provision of
modeling languages, of which the most prominent may be
the Unified Modeling Language (UML). UML is vast and
comprehensive, with a scope that encompasses all aspects of
object-oriented programming. The breadth of that scope
limits the use of idioms, patterns, and other paradigms that
are applicable in a narrower context of specific unitary and
categorical classes. It would be beneficial to have methods
of processing that were specifically directed to the narrower
but still critical problems of the specification, construction,
and processing of domain-specific object-oriented data
structures.

[0006] A much-touted feature of UML is its graphical
basis. Although graphical diagrams are cherished by some
developers, others have found graphical representations of
module specifications unintuitive, bulky, clumsy to edit, and
inconvenient for automatic processing. Therefore it would
be beneficial to have non-graphical means of module speci-

Oct. 11, 2007

fication, especially if such means were intuitive, concise,
easy to edit, and convenient for automatic processing.

SUMMARY

[0007] A language for the specification of object-oriented
modules is disclosed. The language permits human-readable
expression of module specifications. A module specification
includes a module identifier and a module content specifi-
cation. The module content specification includes at least
one specification selected from the group consisting of a
class specification and a host members specification.
[0008] The class specification includes a class identifier, a
class open terminal, a class content specification, and a class
close terminal. The class content specification optionally
includes one or more specifications selected from the group
consisting of the class specification and a class members
specification.

[0009] The host members specification and the class mem-
bers specification each include a type specification, a mem-
ber specification, optional additional member specifications,
and a members terminator terminal. The member specifica-
tion is selected from the group consisting of a datum
specification and a method specification. The datum speci-
fication includes a datum identifier. The method specifica-
tion includes a method identifier and an arguments specifi-
cation. The arguments specification includes an arguments
open terminal, optional argument specifications, and an
arguments close terminal. The argument specification, if
any, includes the type specification and an optional argument
identifier.

[0010] The type specification is selected from the group
consisting of a void type specification, a value type speci-
fication, a reference type specification, and a compound type
specification. The reference type specification includes the
class identifier. The compound type specification is selected
from the group consisting of a reference sequence type
specification, a value sequence type specification, a refer-
ence set type specification, a value set type specification, a
index map type specification, a convert map type specifica-
tion, a bind map type specification, and a scale map type
specification.

[0011] The module specification optionally includes a
module predicates specification. The module content speci-
fication optionally includes a module content predicates
specification. The class specification optionally includes a
class predicates specification. The class content specification
optionally includes a class content predicates specification.
The datum specification optionally includes a datum predi-
cates specification. The method specification optionally
includes a method predicates specification. The argument
specification optionally includes an argument predicates
specification.

[0012] The module predicates specification, the module
content predicates specification, the class predicates speci-
fication, the class content predicates specification, the datum
predicates specification, the method predicates specification,
and the argument predicates specification, if any, each
includes a predicate open terminal, a predicate specification,
a predicate close terminal, and, optionally, additional predi-
cate specifications. The predicate specifications are selected
from the group consisting of a qualifier specification, a
singleton specification, and a plurality specification. The
qualifier specification includes a qualifier terminal. The
singleton specification includes a singleton terminal and an

US 2007/0239773 Al

object expression. The object expression is selected from the
group consisting of an identifier and a quote. The plurality
specification includes a plurality terminal and at least one
object expression.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 depicts a generator which reads module
specifications and writes programming language code and
documentation corresponding to the specifications.

[0014] FIG. 2 begins the depiction of a summary specifi-
cation of an exemplary object-oriented module suitable for
representation of specifications of object-oriented modules
(1/2).

[0015] FIG. 3 concludes the depiction of a summary
specification of an exemplary object-oriented module suit-
able for representation of specifications of object-oriented
modules (2/2).

[0016] FIG. 4 depicts an informal definition of an exem-
plary class representing a unitary host element for represen-
tation of specifications of object-oriented modules.

[0017] FIG. 5 depicts an informal definition of an exem-
plary class representing element elements.

[0018] FIG. 6 depicts an informal definition of an exem-
plary class representing entity elements.

[0019] FIG. 7 depicts an informal definition of an exem-
plary class representing module elements.

[0020] FIG. 8 depicts an informal definition of an exem-
plary class representing class elements.

[0021] FIG. 9 depicts an informal definition of an exem-
plary class representing host-class elements.

[0022] FIG. 10 depicts an informal definition of an exem-
plary class representing operand elements.

[0023] FIG. 11 depicts an informal definition of an exem-
plary class representing argument elements.

[0024] FIG. 12 depicts an informal definition of an exem-
plary class representing member elements.

[0025] FIG. 13 depicts an informal definition of an exem-
plary class representing member-function elements.

[0026] FIG. 14 depicts an informal definition of an exem-
plary class representing member-datum elements.

[0027] FIG. 15 depicts an informal definition of an exem-
plary class representing type clements.

[0028] FIG. 16 depicts an informal definition of an exem-
plary class representing void-type elements.

[0029] FIG. 17 depicts an informal definition of an exem-
plary class representing value-type elements.

[0030] FIG. 18 depicts an informal definition of an exem-
plary class representing bit-type elements.

[0031] FIG. 19 depicts an informal definition of an exem-
plary class representing integer-type elements.

[0032] FIG. 20 depicts an informal definition of an exem-
plary class representing cardinal-type elements.

[0033] FIG. 21 depicts an informal definition of an exem-
plary class representing text-type elements.

[0034] FIG. 22 depicts an informal definition of an exem-
plary class representing reference-type elements.

[0035] FIG. 23 depicts an informal definition of an exem-
plary class representing compound-type elements.

[0036] FIG. 24 depicts an informal definition of an exem-
plary class representing sequence-type elements.

[0037] FIG. 25 depicts an informal definition of an exem-
plary class representing value-sequence-type elements.
[0038] FIG. 26 depicts an informal definition of an exem-
plary class representing reference-sequence-type clements.

Oct. 11, 2007

[0039] FIG. 27 depicts an informal definition of an exem-
plary class representing set-type elements.

[0040] FIG. 28 depicts an informal definition of an exem-
plary class representing value-set-type clements.

[0041] FIG. 29 depicts an informal definition of an exem-
plary class representing reference-set-type elements.
[0042] FIG. 30 depicts an informal definition of an exem-
plary class representing map-type elements.

[0043] FIG. 31 depicts an informal definition of an exem-
plary class representing index-map-type clements.

[0044] FIG. 32 depicts an informal definition of an exem-
plary class representing scale-map-type elements.

[0045] FIG. 33 depicts an informal definition of an exem-
plary class representing bind-map-type elements.

[0046] FIG. 34 depicts an informal definition of an exem-
plary class representing convert-map-type elements.

[0047] FIG. 35 depicts an informal definition of an exem-
plary class representing logger elements.

[0048] FIG. 36 depicts exemplary lexical detectors for the
initial state of a lexical analyzer for a language for module
specification.

[0049] FIG. 37 depicts exemplary predicate relations of a
lexical analyzer for a language for module specification.
[0050] FIG. 38 depicts additional exemplary predicate
relations of a lexical analyzer for a language for module
specification.

[0051] FIG. 39 depicts exemplary lexical detectors for the
double-quote state of a lexical analyzer for a language for
module specification.

[0052] FIG. 40 depicts exemplary lexical detectors for the
single-quote state of a lexical analyzer for a language for
module specification.

[0053] FIG. 41 depicts exemplary lexical detectors for the
multi-quote state of a lexical analyzer for a language for
module specification.

[0054] FIG. 42 depicts exemplary grammar rules for a
language for module specification.

[0055] FIG. 43 depicts additional exemplary grammar
rules for a language for module specification.

[0056] FIG. 44 depicts additional exemplary grammar
rules for a language for module specification.

[0057] FIG. 45 depicts additional exemplary grammar
rules for a language for module specification.

[0058] FIG. 46 depicts additional exemplary grammar
rules for a language for module specification.

[0059] FIG. 47 depicts an exemplary module specification
for an object-oriented module suitable for representation of
media files in a file system.

DETAILED DESCRIPTION

1 Terminology

[0060] The present invention concerns the specification of
object-oriented modules. An object-oriented module, or,
more simply, a module, is defined as a collection of inter-
related object-oriented classes. Specification is a human-
oriented activity by which the characteristics of a module
may be conveniently expressed. This invention uses textual
expressions for specification of modules. Textual expression
are easily prepared. When such expressions are consistent
with a formal grammar, they are also easily processed to
construct object-oriented data structures, which are conve-
nient to produce module definitions and other useful prod-
ucts.

US 2007/0239773 Al

[0061] The interrelated classes in a module may be use-
fully divided into categorical classes and unitary classes. A
categorical class corresponds to a category in a domain-
specific model. Thus categorical classes are largely deter-
mined by the requirements of the domain to which applica-
tions of the specified module are directed. Instances of a
categorical class are typically unbounded in number. Cat-
egorical classes are usually arranged in a hierarchy or a
directed acyclic graph, reflecting the relations of genera and
species among the domain-specific categories.

[0062] Unitary classes relate to the module as a whole. A
host is one important unitary class. The host for a module
provides a unitary representation of what is typically a
multiplicity of objects. The objects are instances of the
categorical classes. The host provides access to individual
and collected instances according to an organizational
scheme which reflects the requirements of the domain.
Together with the categorical instances, the host provides a
domain-specific object-oriented data structure which is con-
venient as a target for construction and as a source for
processing.

[0063] The categorical classes of a module, corresponding
to the categories of a domain, are characterized by members,
including both data and functions. The form of the member
data is specified in the class but each instance has its own
copy of member data elements. Member data is character-
ized by its type. Type is a complex property of data in many
object-oriented programming languages. In the present
invention, a simplified type system is used, permitting
concise specification and enforcing consistency of usage.
Types include value types, reference types, and compound
types.

[0064] Value types correspond to scalar data, in which the
value of the data accords with the meaning of the data.
Scalar data is typically represented by built-in types of a
programming language (e.g. int, float, char, in the C lan-
guage) or by simple classes (e.g. string, date) which may be
passed by value (copying elements or structures). Scalar data
is used to represent properties of instances, such as identi-
fiers and measured quantities.

[0065] Reference types correspond to references to
instances of categories. Reference data is typically repre-
sented by pointers or references in a programming language.
The value of a pointer is arbitrary and bears no relation to the
meaning of the object the pointer represents. Reference data
is typically passed by reference (i.e. by copying pointers, not
structures). Reference data is used to implement associations
among categories in which a first instance is associated with
a second instance.

[0066] Compound types correspond to collections. Provi-
sion of collections varies widely in programming languages.
However, for effective application programming, set,
sequence, and map may be sufficient. A set is an unordered
collection of elements which does not contain duplicates. A
set provides efficient determination of the presence or
absence of an element. A set also provide efficient insertion
and deletion of an elements. Efficient iteration of the con-
stituent elements of a set is another requirement. Efficient in
this context means logarithmic in the number of contained
elements for determination, insertion and deletion. Sets may
contain reference or value data.

[0067] A sequence is an ordered collection which provides
efficient insertion and deletion of elements at either end of
the sequence, thus permitting stack, queue, and dequeue

Oct. 11, 2007

functionality. A sequence may also provide efficient random
access to individual elements by offset in the collection
order. A sequence also provides efficient iteration of the
elements in order. Sequences may contain reference or value
data.

[0068] A map provides efficient association between
domain and range elements. Given a domain element, a map
efficiently produces a corresponding range element or indi-
cates the absence of such an element. Maps must efficiently
support insertion and deletion of domain, range pairs. Maps
support all combinations of range and domain value and
reference. An index denotes a map with a value domain and
a reference range. A scale denotes a map with a reference
domain and a value range. A binding denotes a map with
reference domain and range. A conversion denotes a map
with value domain and range.

[0069] Module definition requires specification of mem-
bers and class relationships, but other useful information
may also be present in module specifications. To permit
specification of wide-ranging supplemental information on
modules, classes, and members, a system of predicates is
incorporated into the specification language. Predicates in
general consist of a relation and, optionally, one or more
objects. The context in which a predicate is expressed
determines the subject to which the predicate applies. Predi-
cates are classified as qualifier, singleton, or plurality predi-
cates according to the variety of their objects. A qualifier
does not accept any objects. A singleton accepts exactly one
object. A plurality accepts one or more objects.

[0070] To permit construction of object-oriented data
structures from textual expressions without undue difficulty,
a formal grammar may be used to precisely characterize the
permissible textual expressions. The use of formal gram-
mars to process textual expressions is well known in the art;
the relevant practice is designated syntax-directed transla-
tion. Excellent tools are available to facilitate the develop-
ment of parsers which process textual expressions to gen-
erate computational operations in a systematic fashion. For
the present invention, the tools utilized include flex, a lexical
scanner generator, and bison, a generator providing a parser
suitable for syntax-directed translation. Flex and bison are
open-source tools which are readily available and in wide
use.

[0071] Although syntax-directed translation is well known
in the art, a quick review of the terminology is provided. A
grammar consists of a collection of rules. Each rule relates
a nonterminal token to a sequence (possibly empty) of
terminal and nonterminal tokens. The tokens may be asso-
ciated with data elements. Most convenient for the present
invention is to associate tokens with instances of object-
oriented classes. Terminal tokens are identified by lexical
analysis of the textual expression which is being processed.
Nonterminal tokens typically represent partially or fully
constructed instances of domain-specific classes, or ele-
ments that are predecessors to such instances. Rules may be
associated with processing steps, often facilitating the con-
struction of the object-oriented data structure which is the
product of parsing. The parsing proceeds by application of
the rules; each application of a rule, denoted a production or
reduction, may be usefully considered as an event, the

US 2007/0239773 Al

specific aspects of which are characterized by the data
elements associated with the rule tokens at the time of the
rule application.

2 System Overview

[0072] Refer to FIG. 1. A generator 1000 processes mod-
ule specifications compatible with a grammar 1002 to pro-
duce generated-code 1004 and generated-documents 1006.
The specifications are processed by a parser 1008, which
constructs an object-oriented data structure encapsulated in
a host 1010. The host 1010 represents the specified modules
as an object-oriented data structure. The constituent module
specifications of the host 1010 are processed by a code-
generator 1012 to provide the generated-code 1004. The
generated code includes software components written in a
conventional object-oriented programming language. The
constituent module specifications of the host 1010 are also
processed by a document-generator 1014 to provide the
generated-documents 1006. The generated documentation
includes descriptions and figures which characterize the
specified modules.

[0073] The present invention is directed to the expression
of module specifications using the language of the grammar
1002, and to the processing of module specifications by the
parser 1008 to produce an object-oriented data structure
encapsulated by the host 1010. Co-pending applications
relate to the processing of the host 1010 to produce the
generated-code 1004 and the generated-documents 1006.

3 Module Specification Language Overview.

[0074] An exemplary language for the specification of
object-oriented modules is characterized by the grammar
1002. The grammar 1002 is realized by a parser 1008. The
parser 1008 includes lexical analysis to detect terminal
tokens. The parser 1008 further includes syntax analysis in
which terminal and nonterminal tokens are processed
according to rules. Some tokens are associated with
instances of classes specified by a meta-module; several
classes specific to the processing requirements of the parser
are also provided for association with tokens. The detection
of lexical terminal tokens and the activation of syntax rules
is associated with the actions of the parser. The parser
operates on an instance of the meta-module host, assembling
a data structure. The elements of the data structure are
instances of the classes defined by the meta-module, includ-
ing a module class, a host class, a class class, a datum class,
a method class, and a type class. Certain attributes of the
meta-module instances are specified through a predicate
mechanism.

[0075] The grammar 1002 accepts expressions consisting
of interspersed module specifications and class-scope speci-
fications. A module specification corresponds to an instance
of the module class and, optionally, an instance of the host
class. A module specification includes an identifier, optional
predicates, and a curly-bracket delimited module body. A
class-scope specification corresponds to an instance of the
class class. A class-scope specification includes a module
identifier, a scope terminal, a class identifier, and a curly-
bracket delimited class body.

[0076] Within the module body, classes, members, and
predicates may be specified. A class specification corre-
sponds to an instance of the class class. A class specification
includes an identifier, optional predicates, and a curly-

Oct. 11, 2007

bracket delimited class body. A member specification cor-
responds to an instance of the member class. A member
specification includes a type, specification of one or more
datum or methods, separated by commas, and a closing
semicolon. A datum specification corresponds to an instance
of the datum class. A datum specification includes an iden-
tifier and optional predicates. A method specification corre-
sponds to an instance of the method class. A method
specification includes an identifier, an argument list delim-
ited by parentheses, and optional predicates. An argument
list consists of zero or more argument specifications, sepa-
rated by commas. An argument specification corresponds to
an instance of the argument class. An argument includes a
type, an optional identifier, and optional predicates.

[0077] Members specified in a module body are accumu-
lated to an instance of the host class, if any. Likewise,
predicates in a module body are accumulated to an instance
of the host class. Classes specified in a module body are
considered root classes; by default these classes do not have
any genera.

[0078] Within a class body, classes, members, and predi-
cates may be specified. The specifications of classes, mem-
bers, and predicates in a class body are syntactically equiva-
lent to respective specifications in a module body. However,
classes specified in a class body are defined as species of the
containing class. Members and predicates specified in a
class body are associated with the containing class.

[0079] A type specification corresponds to an instance of
the type class. Types are specified as void, value, reference,
or compound types. Value types include bit, integer, cardi-
nal, and text. Reference types refer to instances of module
classes. Compound types define collections, including set,
sequence, and map. Compound types include specification
of the type of the collected elements.

[0080] Predicates are delimited by square brackets, defin-
ing a predicate scope. A predicate scope may specify one or
more predicates. Each specified predicate includes a textual
relation (corresponding to a keyword) and, optionally, one or
more textual objects. Predicates are separated by semico-
lons. Objects are separated by commas. Predicates are
further specialized to qualifiers, singletons, and pluralities.
Qualifiers do not accept any objects. Singletons accept a
single object. Pluralities accept multiple objects. Individual
predicates are processed to instances of specializations of
the predicator class; predicators are ultimately processed to
perform editorial operations on instances of specializations
of the entity class.

4 Meta-Module Description

[0081] Refer to FIG. 2. A discursive-model meta-module
1016 specifies classes for representation and processing of
modules for object-oriented programming. The meta-mod-
ule 1016 has a host class host 1018.

[0082] The host 1018 represents an instantiation of the
module. A datum modules 1020 collects module specifica-
tions. A datum types 1022 collects types defined amongst
modules for memory management.

[0083] A categorical class element 1024 defines a common
base for parsed elements.

[0084] A categorical class entity 1026 represents named
elements. The entity 1026 has genus element 1024.

[0085] A categorical class module 1028 represents a col-
lection of interrelated classes for object-oriented program-
ming. The module 1028 has genus entity 1026. A datum

US 2007/0239773 Al

classes 1030 represents the collection of classes within a
module. A datum forward-classes 1032 represents related
classes which are used within a particular module but are not
defined in the module. A datum host 1034 represents a class,
an instance of which encapsulates an application-specific
object-oriented data structure corresponding to an instantia-
tion of a module.

[0086] A categorical class class 1036 represents a class for
object-oriented programming. The class 1036 has genus
entity 1026. A datum members 1038 represents the members
of a particular class.

[0087] A categorical class host-class 1040 represents an
instantiation of a module. The host-class 1040 has genus
class 1036.

[0088] A categorical class operand 1042 represents a typed
entity in a scope. The operand 1042 has genus entity 1026.
[0089] A categorical class argument 1044 represents an
argument to a member function. The argument 1044 has
genus operand 1042.

[0090] A categorical class member 1046 represents a
member in a class. The member 1046 has genus operand
1042.

[0091] A categorical class member-function 1048 repre-
sents a member function in a class. The member-function
1048 has genus member 1046. A datum arguments 1050
specifies the arguments to a member function.

[0092] A categorical class member-datum 1052 represents
a member datum in a class. The member-datum 1052 has
genus member 1046.

[0093] Refer to FIG. 3. A categorical class type 1054
characterizes the typing of an operand. The type 1054 has
genus element 1024.

[0094] A categorical class void-type 1056 characterizes
the absence of a type. The void-type 1056 has genus type
1054.

[0095] A categorical class value-type 1058 characterizes a
type which is passed by value. The value-type 1058 has
genus type 1054.
[0096] A categorical class bit-type 1060 represents a Bool-
ean value, true or false. The bit-type 1060 has genus
value-type 1058.

[0097] A categorical class integer-type 1062 represents an
integral value. The integer-type 1062 has genus value-type
1058.

[0098] A categorical class cardinal-type 1064 represents a
non-negative integral value. The cardinal-type 1064 has
genus value-type 1058.

[0099] A categorical class text-type 1066 represents a
textual value. The text-type 1066 has genus value-type 1058.
[0100] A categorical class reference-type 1068 character-
izes a type which is passed by reference. The reference-type
1068 has genus type 1054.

[0101] A categorical class compound-type 1070 charac-
terizes a type which corresponds to a collection. The com-
pound-type 1070 has genus type 1054.

[0102] A categorical class sequence-type 1072 character-
izes a sequence of elements. The sequence-type 1072 has
genus compound-type 1070.

[0103] A categorical class value-sequence-type 1074 char-
acterizes a sequence of value-typed elements. The value-
sequence-type 1074 has genus sequence-type 1072.

Oct. 11, 2007

[0104] A categorical class reference-sequence-type 1076
characterizes a sequence of reference-typed elements. The
reference-sequence-type 1076 has genus sequence-type
1072.

[0105] A categorical class set-type 1078 characterizes a set
of elements. The set-type 1078 has genus compound-type
1070.

[0106] A categorical class value-set-type 1080 character-
izes a set of value-typed elements. The value-set-type 1080
has genus set-type 1078.

[0107] A categorical class reference-set-type 1082 char-
acterizes a set of reference-typed elements. The reference-
set-type 1082 has genus set-type 1078.

[0108] A categorical class map-type 1084 characterizes a
map associating pairs of elements. The map-type 1084 has
genus compound-type 1070.

[0109] A categorical class index-map-type 1086 charac-
terizes a map, of which the range elements are of reference
type and the domain elements are of value type. The
index-map-type 1086 has genus map-type 1084.

[0110] A categorical class scale-map-type 1088 character-
izes a map, of which the range elements are of value type
and the domain elements are of reference type. The scale-
map-type 1088 has genus map-type 1084.

[0111] A categorical class bind-map-type 1090 character-
izes a map, of which both the range and domain elements are
of reference type. The bind-map-type 1090 has genus map-
type 1084.

[0112] A categorical class convert-map-type 1092 charac-
terizes a map, of which both the range and domain elements
are of value type. The convert-map-type 1092 has genus
map-type 1084.

[0113] A categorical class logger 1094 provides logging
services.

4.1 Host Class

[0114] Refer to FIG. 4. The host 1018 represents an
instantiation of the module. The modules 1020 collects
module specifications. The modules 1020 ranges over
instances of the class module 1028. The modules 1020 is a
meron. A method module 1096 maps module identifiers to
module specifications. A datum module-index 1098 maps
module identifiers to module specifications. The module-
index 1098 ranges over instances of the class module 1028.
A method accept-module 1100 accepts a module specifica-
tion. The types 1022 collects types defined amongst modules
for memory management. The types 1022 ranges over
instances of the class type 1054. The types 1022 is a meron.
A method accept-type 1102 accepts a supplied type instance
for accumulation in types 1022. The accept-type 1102
always accepts the supplied type.

4.2 Element Categorical Class

[0115] Refer to FIG. 5. The element 1024 defines a com-
mon base for parsed elements. The element 1024 is a
root-level class of the meta-module 1016. A datum source
1104 identifies the source file and line from which the
element was parsed. The source 1104 is useful for reporting
errors. The source 1104 ranges over scalar text.

4.3 Entity Categorical Class

[0116] Refer to FIG. 6. The entity 1026 represents named
elements. The entity 1026 has genus element 1024. A datum

US 2007/0239773 Al

id 1106 uniquely identifies a particular entity in a global
scope. The id 1106 is required. The id 1106 ranges over
scalar text. A datum term 1108 provides a text-friendly
identifier, not necessarily unique. The term 1108 is used in
the generated particulars of an entity. The term 1108 is
required. The term 1108 ranges over scalar text. A datum
title 1110 provides a text-friendly phrase, suitable for head-
ing a section or figure. The title 1110 ranges over scalar text.
The title 1110 is currently ignored except for module and
class. A datum purpose 1112 describes the purpose of a
particular entity. The purpose 1112 should be a predicate
corresponding to the entity as a subject. The purpose 1112
ranges over scalar text. A datum passage 1114 indicates the
segment in which to present a particular entity. The passage
1114 ranges over scalar text. The passage 1114 should be
restricted to the class 1036 and the module 1028. A datum
remarks 1116 provides primary supplemental descriptive
information pertaining to a particular entity. The remarks
1116 should be a predicate corresponding to the entity as a
subject. The remarks 1116 are presented at the beginning of
the generated particulars of a particular entity. The remarks
1116 ranges over scalar text. A datum notes 1118 provides
secondary supplemental descriptive information pertaining
to a particular entity. The notes 1118 should be a predicate
corresponding to the entity as a subject. The notes 1118 are
presented at the end of the generated particulars of a
particular entity. The notes 1118 ranges over scalar text.

4.4 Module Categorical Class

[0117] Refer to FIG. 7. The module 1028 represents a
collection of interrelated classes for object-oriented pro-
gramming. The module 1028 has genus entity 1026. The
classes 1030 represents the collection of classes within a
module. The classes 1030 ranges over instances of the class
class 1036. The classes 1030 is a meron. A datum class-
index 1120 associates a particular class 1036 with its unique
id 1106. The class-index 1120 ranges over instances of the
class class 1036. A method accept-class 1122 accepts an
instance of the class 1036 as a constituent of a module. The
accept-class 1122 updates the classes 1030 and the class-
index 1120. The accept-class 1122 fails on duplicate id 1106.
A method resolve-class 1124 resolves a textual identifier to
an instance of the class 1036 which is a constituent of a
module. The resolve-class 1124 uses the class-index 1120. A
method sort-classes 1126 performs topological sort of mod-
ule classes to ensure that no class is defined before its
genera. The forward-classes 1032 represents related classes
which are used within a particular module but are not
defined in the module. The forward-classes 1032 ranges over
instances of the class class 1036. The forward-classes 1032
is a meron. A method accept-forward-class 1128 accepts an
instance of the class 1036 as a forward class definition. The
accept-forward-class 1128 updates the forward-classes 1130
and the class-index 1120. The accept-forward-class 1128
assumes memory management of the supplied class. A
datum root-classes 1132 represents the collection of classes
with a module which do not have any generalizations within
the module. The root-classes 1132 is a subset of the classes
1030. The root-classes 1132 ranges over instances of the
class class 1036. The host 1034 represents a class, an
instance of which encapsulates an application-specific
object-oriented data structure corresponding to an instantia-
tion of a module. The host 1034 is the target for module-
scoped member specifications. The host 1034 instance may

Oct. 11, 2007

be denoted as a model object or a document object. The host
1034 may contain resolver, depository, factory, reflector, etc.
according to specification. The host 1034 ranges over
instances of the class host-class 1040. The host 1034 is a
meron. A method accept-host 1134 accepts an instance of the
host-class 1040 for assignment to the host 1034. The accept-
host 1134 fails if the host class instance is already defined.
A datum viewer-id 1136 specifies a view operator to be
generated; the generated viewer provides a useful base class
for read-only operators that process an instantiation of a
module. The viewer-id 1136 ranges over scalar text. A datum
editor-id 1138 specifies an edit operator to be generated; the
generated editor provides a useful base class for write-
capable operators that process an instantiation of a module.
The editor-id 1138 ranges over scalar text. A datum factory-
id 1140 specifies a factory operator to be generated; the
generated factory provides text-driven instantiation of
objects from the classes of a module. The factory-id 1140 is
particularly useful for processing markup. The factory-id
1140 ranges over scalar text. A datum factory-root-id 1142
specifies the base class from which factory-generated classes
must derive; cf. the factory-id 1140. The factory-root-id
1142 ranges over scalar text. A datum auditor-id 1144
specifies an auditor operator to be generated; the generated
auditor determines conformance with specified require-
ments. The auditor-id 1144 ranges over scalar text. A datum
reflector-id 1146 specifies a reflector operator to be gener-
ated; the generated reflector provides a run-time represen-
tation of the specialization and generalization relationships
of'the classes of a module. The reflector-id 1146 ranges over
scalar text. A datum parser-id 1148 specifies an external
parser class, for which lexical responders shall be generated
to facilitate generic processing of assignments from predi-
cates. The parser-id 1148 ranges over scalar text. A datum
resolver-id 1150 specifies a resolver operator to be gener-
ated; the generated resolver provides resolution of identifiers
to instances. The resolver-id 1150 uses the member specified
by the resolver-id-field 1152 of the class specified by the
resolver-root-id 1154. The resolver-id 1150 resolves identi-
fiers to instances of the class specified by the resolver-root-id
1154. The resolver-id 1150 ranges over scalar text. The
resolver-id 1150 specializes the editor operator specified by
the editor-id 1138. A datum resolver-root-id 1154 specifies
the common base class for resolution. The resolver-root-id
1154 must have a member datum or function corresponding
to the resolver-id-field 1152. The resolver-root-id 1154
ranges over scalar text. A datum resolver-id-field 1152
specifies the member of the class specified by the resolver-
root-id 1154 which uniquely identifies instances of the class
specified by the resolver-root-id 1154. The resolver-id-field
1152 is used by the generated resolver. The resolver-id-field
1152 must be a member datum or member function of the
class specified by the resolver-root-id 1154. The resolver-
id-field 1152 ranges over scalar text. A datum acceptor-id
1156 specifies an acceptor class to be generated; the gener-
ated acceptor serves as a genus class for specific acceptor
classes, also to be generated. The acceptor-id 1156 is par-
ticularly useful for parsing and processing markup. The
acceptor-id 1156 ranges over scalar text. A datum predicator-
id 1158 specifies a predicator class to be generated; the
generated predicator serves as a genus class for specific
predicator classes, also to be generated. The predicator-id
1158 is particularly useful for parsing and processing
markup. The predicator-id 1158 ranges over scalar text. A

US 2007/0239773 Al

method qualifier-id 1160 specifies a qualifier class, special-
izing the predicator, to be generated. A method singleton-id
1162 specifies a singleton class, specializing the predicator,
to be generated. A method plurality-id 1164 specifies a
plurality class, specializing the predicator, to be generated.
A method predicator-sequence-id 1166 specifies a class
providing a sequence of predicators, to be generated. A
method promissory-reference-id 1168 specifies a class pro-
viding a deferred resolution of a textual reference. A method
depository-id 1170 specifies a depository class, holding
promissory references for eventual redemption. A datum
predicator-host-id 1172 specifies a predicator host class to be
generated; the generated predicator host serves predicators
corresponding to predicates. The predicator-host-id 1172 is
particularly useful for processing markup. The predicator-
host-id 1172 ranges over scalar text.

4.5 Class Categorical Class

[0118] Refer to FIG. 8. The class 1036 represents a class
for object-oriented programming. The class 1036 has genus
entity 1026. A datum module 1174 represents a particular
instance of the module 1028 of which a particular class is a
constituent. The module 1174 is complementary to the
classes 1030. The module 1174 ranges over instances of the
class module 1028. A datum genera 1176 represents the
collection of classes from which a particular class is derived.
The genera 1176 includes the closest generalizations of a
particular class. The genera 1176 ranges over instances of
the class class 1036. The members 1038 represents the
members of a particular class. The members 1038 may
include data members and function members. The members
1038 ranges over instances of the class member 1046. The
members 1038 is a meron. A datum member-index 1178
associates members with their scoped identifiers. The mem-
ber-index 1178 ranges over instances of the class member
1046. A datum species 1180 represents the collection of
classes which are derived from a particular class. The
species 1180 are the closest specializations of a particular
class. The species 1180 are useful for depth-first processing
of classes in a module; cf. the root-classes 1132. The species
1180 is complementary to the genera 1176. The species 1180
ranges over instances of the class class 1036. A datum
genera-closure 1182 represents the totality of classes in the
ancestry of a class. The genera-closure 1182 includes all the
generalizations of a particular class. The genera-closure
1182 ranges over instances of the class class 1036. A datum
species-closure 1184 represents the totality of classes
descending from a class. The species-closure 1184 includes
all the specializations of a particular class. The species-
closure 1184 is complementary to the genera-closure 1182.
The species-closure 1184 ranges over instances of the class
class 1036. A datum is-module-root 1186 indicates whether
a particular class lacks any generalizations in its containing
module 1028. The is-module-root 1186 corresponds to
membership in the root-classes 1132. The is-module-root
1186 ranges over scalar boolean. A datum constructs-
markup-element 1188 indicates responsiveness to element
construction in processing markup. The constructs-markup-
element 1188 is applicable to the host only. The constructs-
markup-element 1188 ranges over scalar boolean. A datum
accepts-markup-element 1190 indicates responsiveness to
elements in processing markup. The accepts-markup-ele-
ment 1190 ranges over scalar boolean. A datum accepts-
markup-text 1192 indicates responsiveness to text in pro-

Oct. 11, 2007

cessing markup. The accepts-markup-text 1192 ranges over
scalar boolean. A datum accepts-markup-predicate 1194
indicates responsiveness to predicates in processing markup.
The accepts-markup-predicate 1194 ranges over scalar bool-
ean. A datum markup-configure 1196 indicates responsive-
ness to element configuration in processing markup. The
markup-configure 1196 ranges over scalar boolean. A datum
markup-commit 1198 indicates responsiveness to element
commitment in processing markup. The markup-commit
1198 ranges over scalar boolean. A datum is-pure-abstract
1200 indicates whether class is not instantiable due to pure
member functions. The is-pure-abstract 1200 is computed at
module instantiation; do not set. The is-pure-abstract 1200
ranges over scalar boolean. A method accept-member 1202
accumulates a member. The accept-member 1202 updates
the members 1038 and the member-index 1178. The accept-
member 1202 fails on duplicate scoped identifiers for mem-
bers. A datum provides-downcast 1204 specifies the provi-
sion of a safe downcast to immediate species of a class. The
provides-downcast 1204 is occasionally useful but easily
abused; beware. The provides-downcast 1204 ranges over
scalar boolean. A datum tags 1206 indicates generic textual
identifiers usable for instantiation of a particular class. The
tags 1206 are especially useful for parsing text and process-
ing markup. The tags 1206 ranges over scalar text. A method
acceptor-host-id 1208 specifies a class which maps tags to
acceptors. A datum audit-requirements 1210 specifies bool-
ean conditions that may be verified by a generated auditor as
specified by the auditor-id 1212. The audit-requirements
1210 ranges over scalar text. A datum auditor-context 1214
supplies reporting context for auditor. The auditor-context
1214 must evaluate to an instance of text. The auditor-
context 1214 ranges over scalar text.

4.6 Host Class Categorical Class

[0119] Refer to FIG. 9. The host-class 1040 represents an
instantiation of a module. The host-class 1040 represents the
totality of an application-specific object-oriented data struc-
ture. The host-class 1040 corresponds to the host 1034. The
host-class 1040 typically occurs in a singleton instance per
application. The host-class 1040 provides a useful target for
parsing, markup, etc. The host-class 1040 has genus class
1036.

4.7 Operand Categorical Class

[0120] Refer to FIG. 10. The operand 1042 represents a
typed entity in a scope. The operand 1042 has genus entity
1026. A datum scope-handle 1216 informally identifies an
operand in a scope. The scope-handle 1216 ranges over
scalar text. A method validate-handle 1218 ensures that a
proposed handle does not conflict with C++ reserved words.
A method accept-scope-handle 1220 provides an acceptor
for the scope-handle 1216. A datum scope-id 1222 uniquely
identifies an operand in a scope. The scope-id 1222 is
applicable to members in a class scope and arguments in a
member function scope. The scope-id 1222 ranges over
scalar text. A datum is-const 1224 indicates whether the
operand may be modified in the scope. The is-const 1224

US 2007/0239773 Al

ranges over scalar boolean. A datum type 1226 specifies the
type of an operand. The type 1226 ranges over instances of
the class type 1054.

4.8 Argument Categorical Class

[0121] Refer to FIG. 11. The argument 1044 represents an
argument to a member function. The argument 1044 has
genus operand 1042. A datum position 1228 indicates the
position of the argument in the member function argument
sequence. The position 1228 ranges over scalar cardinal. A
datum arg-default 1230 indicates a default value for the
argument. The arg-default 1230 ranges over scalar text.

4.9 Member Categorical Class

[0122] Refer to FIG. 12. The member 1046 represents a
member in a class. The member 1046 has genus operand
1042. A datum member-class 1232 identifies the class which
specifies the member. The member-class 1232 ranges over
instances of the class class 1036.

4.10 Member Function Categorical Class

[0123] Refer to FIG. 13. The member-function 1048 rep-
resents a member function in a class. The member-function
1048 has genus member 1046. A datum is-static 1234
indicates a class function. The is-static 1234 is invoked
independently of any instance of the class. The is-static 1234
ranges over scalar boolean. A datum is-virtual 1236 indi-
cates a virtual member function. The is-virtual 1236 ranges
over scalar boolean. A datum is-pure 1238 indicates a pure
virtual member function. The is-pure 1238 implies is-virtual
1236, but not vice versa. The is-pure 1238 precludes instan-
tiation of the containing class when set. The is-pure 1238
ranges over scalar boolean. The arguments 1050 specifies
the arguments to a member function. The arguments 1050
ranges over instances of the class argument 1044. The
arguments 1050 is a meron. A datum inline-definition 1240
specifies the inline definition of a member function. The
inline-definition 1240 ranges over scalar text. A datum
definition 1242 specifies the definition of a member func-
tion. The definition 1242 precludes the inline definition of a
member function. The definition 1242 ranges over scalar
text. A datum indicates 1244 describes the meaning of the
return value of a member function. The indicates 1244
should be a complement to “The member returns a [type],
indicating The indicates 1244 ranges over scalar text.

4.11 Member Datum Categorical Class

[0124] Refer to FIG. 14. The member-datum 1052 repre-
sents a member datum in a class. The member-datum 1052
has genus member 1046. A datum is-meron 1246 indicates
that a member datum is a meronym of the containing
instance of the class to which it belongs. The is-meron 1246
indicates that the member datum is to be deleted on deletion
of the containing instance. The is-meron 1246 indicates that,
by default, viewers and editors of the module should recur-
sively visit the member datum when visiting the containing
instance. The is-meron 1246 ranges over scalar boolean. A
datum is-mutable 1248 indicates that non-const access to a
member datum is provided even when the containing
instance is const. The is-mutable 1248 ranges over scalar
boolean. A datum init 1250 indicates an initial value for the
datum at instantiation. The init 1250 ranges over scalar text.
A method predicator-class-id 1252 specifies an identifier for

Oct. 11, 2007

a predicator class which will mediate transformation from a
textual representation to a type-safe object-oriented element.
The predicator-class-id 1252 identifies a class which is
applicable for direct processing of scalars and meron refer-
ences in predicates and attributes; a promissory reference is
used to process non-meron references. A method promis-
sory-class-id 1254 specifies an identifier for a promissory
class which will mediate deferred transformation from a
textual reference to a type-safe object-oriented element. The
promissory-class-id 1254 identifies a class which is appli-
cable for processing non-meron references in predicates and
attributes. A method acceptor-class-id 1256 specifies an
identifier for an acceptor class which will receive and assign
instances. The acceptor-class-id 1256 identifies a class
which is applicable for processing contained markup ele-
ments. A method generic-acceptor-id 1258 specifies an iden-
tifier for a member function which provides a uniform
acceptance interface (assignment or accumulation) for ele-
ments of the proper type. The generic-acceptor-id 1258
identifies a member function which is required by acceptors
and predicators. A datum acceptor 1260 specifies a member
function to which assignment or accumulation of the datum
is restricted. The acceptor 1260 ranges over instances of the
class member-function 1048. The acceptor 1260 should
indicate a member function which returns a boolean indi-
cating the success of the attempted assignment. A datum
inhibit-predicator 1262 prevents automatic generation of a
predicator for use in parsing and processing markup. The
inhibit-predicator 1262 typically used with an acceptor
where the underlying member datum is a secondary target,
e.g., an index associated with a sequence. The inhibit-
predicator 1262 ranges over scalar boolean. A datum tags
1264 specifies textual identifiers usable for instantiation of a
particular class and subsequently for assignment to a par-
ticular member. The tags 1264 are especially useful for
parsing text and processing markup. The tags 1264 ranges
over scalar text. A datum handles 1266 permit scope-specific
alternative identification. The handles 1266 must be unique
in scope. The handles 1266 are used as identifiers in the
generation of convenience member functions. The handles
1266 ranges over scalar text. A method accept-handle 1268
validates and accepts the supplied handle.

4.12 Type Categorical Class

[0125] Refer to FIG. 15. The type 1054 characterizes the
typing of an operand. The type 1054 has genus element
1024. A method type-text 1270 provides a textual represen-
tation of a type. A method is-plural 1272 distinguishes plural
from singleton types. The is-plural 1272 is false, by default;
non-compound types are singular.

4.13 Void Type Categorical Class

[0126] Refer to FIG. 16. The void-type 1056 characterizes
the absence of a type. The void-type 1056 has genus type
1054. A method type-text 1274 returns “Void”.

4.14 Value Type Categorical Class

[0127] Refer to FIG. 17. The value-type 1058 character-
izes a type which is passed by value. The value-type 1058
has genus type 1054.

US 2007/0239773 Al

4.15 Bit Type Categorical Class

[0128] Refer to FIG. 18. The bit-type 1060 represents a
Boolean value, true or false. The bit-type 1060 has genus
value-type 1058. A method type-text 1276 returns “Bit”.

4.16 Integer Type Categorical Class

[0129] Refer to FIG. 19. The integer-type 1062 represents
an integral value. The integer-type 1062 has genus value-
type 1058. A method type-text 1278 returns “Integer”.

4.17 Cardinal Type Categorical Class

[0130] Refer to FIG. 20. The cardinal-type 1064 repre-
sents a non-negative integral value. The cardinal-type 1064
useful for counting. The cardinal-type 1064 has genus
value-type 1058. A method type-text 1280 returns “Cardi-
nal”.

4.18 Text Type Categorical Class

[0131] Refer to FIG. 21. The text-type 1066 represents a
textual value. The text-type 1066 has genus value-type 1058.
A method type-text 1282 returns “Text”.

4.19 Reference Type Categorical Class

[0132] Refer to FIG. 22. The reference-type 1068 charac-
terizes a type which is passed by reference. The reference-
type 1068 corresponds to a class. The reference-type 1068
has genus type 1054. A datum reference-class-id 1284
identifies the class to which a reference type corresponds.
The reference-class-id 1284 ranges over scalar text. A
method type-text 1286 returns the reference-class-id 1284.

4.20 Compound Type Categorical Class

[0133] Refer to FIG. 23. The compound-type 1070 char-
acterizes a type which corresponds to a collection. The
compound-type 1070 is parameterized by one or more
subsidiary types. The compound-type 1070 has genus type
1054. A datum parameters 1288 specifies the subsidiary
types by which a compound type is parameterized. The
parameters 1288 ranges over instances of the class type
1054. A method type-text 1290 has unspecified purpose. A
method compound-text 1292 specifies the particular com-
pound, e.g. sequence, set, etc. A method is-plural 1294 has
unspecified purpose. The is-plural 1294 is true, by default;
compound types are plural. A datum range 1296 specifies the
characteristic subsidiary type of the elements in the com-
pound type. The range 1296 ranges over instances of the
class type 1054.

4.21 Sequence Type Categorical Class

[0134] Refer to FIG. 24. The sequence-type 1072 charac-
terizes a sequence of elements. The sequence-type 1072
specifies a compound element that permits efficient addition
or removal of elements at the front or back of the sequence.
The sequence-type 1072 specifies a compound element that
permits direct access to elements by position in the
sequence. The sequence-type 1072 specifies a compound
element that permits iteration of the elements in the
sequence. The sequence-type 1072 has genus compound-

Oct. 11, 2007

type 1070. A method compound-text 1298 has unspecified
purpose. The compound-text 1298 returns “Sequence”.

4.22 Value Sequence Type Categorical Class

[0135] Refer to FIG. 25. The value-sequence-type 1074
characterizes a sequence of value-typed elements. The
value-sequence-type 1074 has genus sequence-type 1072. A
datum value-range 1300 specifies the value type of the
sequence eclements. The value-range 1300 ranges over
instances of the class value-type 1058.

4.23 Reference Sequence Type Categorical Class

[0136] Refer to FIG. 26. The reference-sequence-type
1076 characterizes a sequence of reference-typed elements.
The reference-sequence-type 1076 has genus sequence-type
1072. A datum reference-range 1302 specifies the reference
type of the sequence elements. The reference-range 1302
ranges over instances of the class reference-type 1068.

4.24 Set Type Categorical Class

[0137] Refer to FIG. 27. The set-type 1078 characterizes
a set of elements. The set-type 1078 specifies a compound
element that permits efficient determination of the presence
or absence of a particular element in the set. The set-type
1078 specifies a compound element that permits iteration of
elements in the set. The set-type 1078 has genus compound-
type 1070. A method compound-text 1304 has unspecified
purpose. The compound-text 1304 returns “Set”.

4.25 Value Set Type Categorical Class

[0138] Refer to FIG. 28. The value-set-type 1080 charac-
terizes a set of value-typed elements. The value-set-type
1080 has genus set-type 1078. A datum value-range 1306
specifies the value type of the set elements. The value-range
1306 ranges over instances of the class value-type 1058.

4.26 Reference Set Type Categorical Class

[0139] Refer to FIG. 29. The reference-set-type 1082
characterizes a set of reference-typed elements. The refer-
ence-set-type 1082 has genus set-type 1078. A datum ref-
erence-range 1308 specifies the reference type of the set
elements. The reference-range 1308 ranges over instances of
the class reference-type 1068.

4.27 Map Type Categorical Class

[0140] Refer to FIG. 30. The map-type 1084 characterizes
a map associating pairs of elements. The map-type 1084
specifies a compound element that permits association of a
range element with a supplied domain element. The map-
type 1084 specifies a compound element that permits itera-
tion of pairs. The map-type 1084 has genus compound-type
1070. A datum domain 1310 specifies the subsidiary type of
the domain elements. The domain 1310 ranges over
instances of the class type 1054. A method compound-text
1312 has unspecified purpose. The compound-text 1312
returns “Map”.

4.28 Index Map Type Categorical Class

[0141] Refer to FIG. 31. The index-map-type 1086 char-
acterizes a map, of which the range elements are of reference
type and the domain elements are of value type. The

US 2007/0239773 Al

index-map-type 1086 has genus map-type 1084. A datum
value-domain 1314 specifies the value type of the map
domain. The value-domain 1314 ranges over instances of the
class value-type 1058. A datum reference-range 1316 speci-
fies the reference type of the map range. The reference-range
1316 ranges over instances of the class reference-type 1068.

4.29 Scale Map Type Categorical Class

[0142] Refer to FIG. 32. The scale-map-type 1088 char-
acterizes a map, of which the range elements are of value
type and the domain elements are of reference type. The
scale-map-type 1088 has genus map-type 1084. A datum
reference-domain 1318 specifies the reference type of the
map domain. The reference-domain 1318 ranges over
instances of the class reference-type 1068. A datum value-
range 1320 specifies the value type of the map range. The
value-range 1320 ranges over instances of the class value-
type 1058.

4.30 Bind Map Type Categorical Class

[0143] Refer to FIG. 33. The bind-map-type 1090 char-
acterizes a map, of which both the range and domain
elements are of reference type. The bind-map-type 1090 has
genus map-type 1084. A datum reference-domain 1322
specifies the reference type of the map domain. The refer-
ence-domain 1322 ranges over instances of the class refer-
ence-type 1068. A datum reference-range 1324 specifies the
reference type of the map range. The reference-range 1324
ranges over instances of the class reference-type 1068.

4.31 Convert Map Type Categorical Class

[0144] Refer to FIG. 34. The convert-map-type 1092
characterizes a map, of which both the range and domain
elements are of value type. The convert-map-type 1092 has
genus map-type 1084. A datum value-domain 1326 specifies
the value type of the map domain. The value-domain 1326
ranges over instances of the class value-type 1058. A datum
value-range 1328 specifies the value type of the map range.
The value-range 1328 ranges over instances of the class
value-type 1058.

4.32 Logger Categorical Class

[0145] Referto FIG. 35. The logger 1094 provides logging
services. The logger 1094 is a root-level class of the meta-
module 1016.

5 Module Specification Language
5.1 Parse Classes

[0146] The meta-module 1016 includes classes, instances
of which may be associated with tokens in the grammar
1002. The class module 1028 represents a collection of
interrelated classes. The class class 1036 represents a class
for object-oriented programming. The class member 1046
represents a member of an object oriented class, including a
member datum and a member function. The class argument
1044 represents an argument to a member function. The
class type 1054 represents the type of an operand, where
operands include member data, member functions, and
arguments to member functions. The class value-type 1058
represents a scalar type, instances of which are typically
transferred by copying. The class reference-type 1068 rep-

Oct. 11, 2007

resents a reference type, instances of which are typically
transferred by copying a pointer.

[0147] The parser 1008 makes use of several parse-spe-
cific classes in processing specifications compatible with the
grammar 1002. A class parse-members 1330 represents a
specified sequence of instances of the member 1046 sharing
a common type. A class parse-arguments 1332 represents a
sequence of instances of the argument 1044, corresponding
to the argument list of a member function. A class parse-
identifier 1334 represents alphanumeric text identifying an
entity, such as the name of a module, class, member, etc. A
class parse-text 1336 represents arbitrary text in the parser,
typically an object to a predicate.

[0148] The parser 1008 makes wide use of specializations
of'the class predicator 1338 for use in processing predicates.
The predicator 1338 represents an abstract class which is
capable of assigning a value (typically specified by a predi-
cate object) to a member of a parse class. A class predicator-
qualifier 1340, specializing the predicator 1338, represents
an predicator which lacks an object. A class predicator-
singleton 1342, specializing the predicator 1338, represents
an predicator which operates on a single object. A class
predicator-plurality 1344, specializing the predicator 1338,
represents an predicator which operates on plural objects. A
class predicator-sequence 1346 represents a sequence of
instances of the predicator 1338, corresponding to one or
more predicates.

5.2 Lexical Analysis

[0149] FIG. 36 depicts lexical detectors for a state initial
1348 of the grammar 1002. The initial 1348 corresponds to
the initial, default, lexical analysis’ state.

[0150] FIG. 37 and FIG. 38 depict lexical detectors for
predicate relations in the initial 1348. Each predicate relation
corresponds to a particular specialization of the predicator
1338.

[0151] FIG. 39 depicts lexical detectors for a state double-
quote 1350 of the grammar 1002. The double-quote 1350
corresponds to lexical processing inside a double-quoted
string.

[0152] FIG. 40 depicts lexical detectors for a state single-
quote 1352 of the grammar 1002. The single-quote 1352
corresponds to lexical processing inside a single-quoted
string.

[0153] FIG. 41 depicts lexical detectors for a state multi-
quote 1354 of the grammar 1002. The multi-quote 1354
corresponds to lexical processing inside a multi-line quoted
string.

5.2.1 Lexical Analysis Initial State

[0154] Referto FIG. 36. The state initial 1348 corresponds
to the initial, default, lexical analysis state. The initial 1348
detects comments, punctuation, type primitives, reserved
words, and identifiers.

[0155] A match 1356 detects shell-style comments, which
are ignored in processing a module specification. A match
1358 detects white space, which is ignored. A match 1360
detects a newline. The match 1360 triggers a newline 1362,
which maintains an internal line count in the parser 1008.
The line count is useful for reporting errors and other status.
[0156] A match 1364 detects a scope symbol. The match
1364 returns a scope-terminal 1366. The scope symbol
permits a module specification to be distributed over mul-

US 2007/0239773 Al

tiple sections (and files). Each section specifies a scope,
including a module scope or a class scope.

[0157] A match 1368 detects a left curly bracket, opening
a module or class scope. The match 1368 returns an open-
curly-terminal 1370. The open-curly-terminal 1370 serves
as a module open terminal and a class open terminal,
depending on context.

[0158] A match 1372 detects a right curly bracket, closing
a module or class scope. The match 1372 returns a close-
curly-terminal 1374. The open-curly-terminal 1370 serves
as a module close terminal and a class close terminal,
depending on context.

[0159] A match 1376 detects a left square bracket, opening
a predicate scope. The match 1376 returns an open-square-
terminal 1378. The open-square-terminal 1378 serves as a
predicates open terminal.

[0160] A match 1380 detects a right square bracket, clos-
ing a predicate scope. The match 1380 returns a close-
square-terminal 1382. The close-square-terminal 1382
serves as a predicates close terminal.

[0161] A match 1384 detects a left parenthesis, opening an
argument list. The match 1384 returns an open-paren-ter-
minal 1386. The open-paren-terminal 1386 serves as an
arguments open terminal.

[0162] A match 1388 detects a right parenthesis, closing
an argument list. The match 1388 returns a close-paren-
terminal 1390. The close-paren-terminal 1390 serves as an
arguments close terminal.

[0163] A match 1392 detects a left angle bracket, opening
a type parameter sequence for a compound type. The match
1392 returns a open-angle-terminal 1394. The open-angle-
terminal 1394 serves as a parameters open terminal.
[0164] A match 1396 detects a right angle bracket, closing
a type parameter sequence for a compound type. The match
1396 returns a close-angle-terminal 1398. The close-angle-
terminal 1398 serves as a parameters close terminal.
[0165] A match 1400 detects a semicolon, indicating the
end of a sequence of member declarations or a predicate
separator. The match 1400 returns a semicolon-terminal
1402. The semicolon-terminal 1402 serves as a members
terminator terminal.

[0166] A match 1404 detects a comma, separating member
function arguments or predicate objects. The match 1404
returns a comma-terminal 1406. The comma-terminal 1406
serves as a members separator terminal, as an arguments
separator terminal, and as an objects separator terminal,
according to context.

[0167] A match 1408 detects a double quote, indicating
the beginning of double-quoted text. The match 1408 trans-
fers the lexer state to the double-quote 1350. The match
1408 triggers a quote-open 1410, in which the parser 1008
will accumulate quoted text.

[0168] A match 1412 detects a single quote, indicating the
beginning of single-quoted text. The match 1412 transfers
the lexer state to the single-quote 1352. The match 1412
triggers the quote-open 1410, in which the parser 1008 will
accumulate quoted text.

[0169] A match 1414 detects a multi-quote opening
sequence, indicating the beginning of multi-line quoted text.
Single and double-quoted text may not extend across line
boundaries (following the convention of C and C++). A
special multi-line quote is therefore provided to accommo-
date multi-line quoted text. The match 1414 transfers the
lexer state to the multi-quote 1354. The match 1414 triggers

Oct. 11, 2007

the quote-open 1410, in which the parser 1008 will accu-
mulate quoted text, including newlines in the multi-quote
1354.

[0170] A match 1416 detects void type keywords. The
match 1416 returns a void-terminal 1418. The void-terminal
1418 is associated with an instance of the type 1054. The
match 1416 triggers a void-type 1420, which instantiates an
instance of the void-type 1056, a specialization of the type
1054.

[0171] A match 1422 detects integer type keywords. The
match 1422 returns a int-terminal 1424. The int-terminal
1424 is associated with an instance of the value-type 1058.
The match 1422 triggers a int-type 1426, which instantiates
an instance of the integer-type 1062, a specialization of the
value-type 1058.

[0172] A match 1428 detects boolean type keywords. The
match 1428 returns a bit-terminal 1430. The bit-terminal
1430 is associated with an instance of the value-type 1058.
The match 1428 triggers a bit-type 1432, which instantiates
an instance of the bit-type 1060, a specialization of the
value-type 1058.

[0173] A match 1434 detects cardinal type keywords. The
match 1434 returns a card-terminal 1436. The card-terminal
1436 is associated with an instance of the value-type 1058.
The match 1434 triggers a card-type 1438, which instanti-
ates an instance of the cardinal-type 1064, a specialization of
the value-type 1058.

[0174] A match 1440 detects text type keywords. The
match 1440 returns a text-terminal 1442. The text-terminal
1442 is associated with an instance of the value-type 1058.
The match 1440 triggers a text-type 1444 which instantiates
an instance of the text-type 1066, a specialization of the
value-type 1058.

[0175] A match 1446 detects set type keywords. The
match 1446 returns a set-terminal 1448.

[0176] A match 1450 detects map type keywords. The
match 1450 returns a map-terminal 1452.

[0177] A match 1454 detects sequence type keywords.
The match 1454 returns a seq-terminal 1456.

[0178] A match 1458 detects alphanumeric identifiers. The
match 1458 returns a id-terminal 1460. The id-terminal 1460
is associated with an instance of the parse-identifier 1334.
The match 1458 triggers an id 1462, which instantiates an
instance of the parse-identifier 1334 with its constituent text
reflecting the detected identifier. The id-terminal 1460
serves as a module identifier, a class identifier, a datum
identifier, a method identifier, and an object, according to
context.

[0179] A match 1464 matches any character. This detector
indicates an error (unexpected character). The match 1464
triggers a bad-char 1466, which results in a parse failure.
[0180] Refer to FIG. 37. The grammar 1002 includes
relations which are associated with lexer keywords. Each
relation implies a specialization of the predicator 1338,
which is created in the particular lexical responder. Predicate
relations participate in qualifier specifications, singleton
specifications, and plurality specifications.

[0181] A match 1468 detects the reserved word “accep-
tor,” representing a singleton predicate relation. The match
1468 returns a singleton-terminal 1470. The singleton-ter-
minal 1470 is associated with an instance of the predicator-
singleton 1342. The match 1468 triggers an acceptor-predi-
cate 1472, which provides an instance of a specialization of

US 2007/0239773 Al

the predicator 1338 suitable for assignment to the member
datum acceptor 1260 of the class member-datum 1052.
[0182] A match 1474 detects the reserved word “acceptor-
id,” representing a singleton predicate relation. The match
1474 returns the singleton-terminal 1470. The match 1474
triggers an acceptor-id-predicate 1476, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum acceptor-id 1156 of the
class module 1028.

[0183] A match 1478 detects the reserved word “accept-
element,” representing a qualifier predicate relation. The
match 1478 returns a qualifier-terminal 1480. The qualifier-
terminal 1480 is associated with an instance of the predica-
tor-qualifier 1340. The match 1478 triggers an accepts-
markup-element-predicate 1482, which provides an instance
of a specialization of the predicator 1338 suitable for assign-
ment to the member datum accepts-markup-element 1190 of
the class class 1036.

[0184] A match 1484 detects the reserved word “accept-
predicate,” representing a qualifier predicate relation. The
match 1484 returns the qualifier-terminal 1480. The match
1484 triggers an accepts-markup-predicate-predicate 1486,
which provides an instance of a specialization of the predi-
cator 1338 suitable for assignment to the member datum
accepts-markup-predicate 1194 of the class class 1036.
[0185] A match 1488 detects the reserved word “accept-
text,” representing a qualifier predicate relation. The match
1488 returns the qualifier-terminal 1480. The match 1488
triggers an accepts-markup-text-predicate 1490, which pro-
vides an instance of a specialization of the predicator 1338
suitable for assignment to the member datum accepts-
markup-text 1192 of the class class 1036.

[0186] A match 1492 detects the reserved word “default,”
representing a singleton predicate relation. The match 1492
returns the singleton-terminal 1470. The match 1492 trig-
gers an arg-default-predicate 1494, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum arg-default 1230 of the
class argument 1044.

[0187] A match 1496 detects the reserved word “predica-
tor,” representing a singleton predicate relation. The match
1496 returns the singleton-terminal 1470. The match 1496
triggers an predicator-id-predicate 1498, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum predicator-id 1158 of
the class module 1028.

[0188] A match 1500 detects the reserved word “audit,”
representing a plurality predicate relation. The match 1500
returns a plurality-terminal 1502. The plurality-terminal
1502 is associated with an instance of the predicator-plural-
ity 1344. The match 1500 triggers an audit-requirements-
predicate 1504, which provides an instance of a specializa-
tion of the predicator 1338 suitable for assignment to the
member datum audit-requirements 1210 of the class class
1036.

[0189] A match 1506 detects the reserved word “require,”
representing a plurality predicate relation. The match 1506
returns the plurality-terminal 1502. The match 1506 triggers
the audit-requirements-predicate 1504, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum audit-requirements
1210 of the class class 1036.

[0190] A match 1508 detects the reserved word “auditor-
context,” representing a singleton predicate relation. The

Oct. 11, 2007

match 1508 returns the singleton-terminal 1470. The match
1508 triggers an auditor-context-predicate 1510, which pro-
vides an instance of a specialization of the predicator 1338
suitable for assignment to the member datum auditor-con-
text 1214 of the class class 1036.

[0191] A match 1512 detects the reserved word “auditor,”
representing a singleton predicate relation. The match 1512
returns the singleton-terminal 1470. The match 1512 trig-
gers an auditor-id-predicate 1514, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum auditor-id 1144 of the
class module 1028.

[0192] A match 1516 detects the reserved word “con-
struct-element,” representing a qualifier predicate relation.
The match 1516 returns the qualifier-terminal 1480. The
match 1516 triggers a constructs-markup-element-predicate
1518, which provides an instance of a specialization of the
predicator 1338 suitable for assignment to the member
datum constructs-markup-element 1188 of the class class
1036.

[0193] A match 1520 detects the reserved word “defini-
tion,” representing a plurality predicate relation. The match
1520 returns the plurality-terminal 1502. The match 1520
triggers a definition-predicate 1522, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum definition 1242 of the
class member-function 1048.

[0194] A match 1524 detects the reserved word “editor,”
representing a singleton predicate relation. The match 1524
returns the singleton-terminal 1470. The match 1524 trig-
gers an editor-id-predicate 1526, which provides an instance
of'a specialization of the predicator 1338 suitable for assign-
ment to the member datum editor-id 1138 of the class
module 1028.

[0195] A match 1528 detects the reserved word “factory,”
representing a singleton predicate relation. The match 1528
returns the singleton-terminal 1470. The match 1528 trig-
gers a factory-id-predicate 1530, which provides an instance
of'a specialization of the predicator 1338 suitable for assign-
ment to the member datum factory-id 1140 of the class
module 1028.

[0196] A match 1532 detects the reserved word “factory-
root,” representing a singleton predicate relation. The match
1532 returns the singleton-terminal 1470. The match 1532
triggers a factory-root-id-predicate 1534, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum factory-root-id 1142 of
the class module 1028.

[0197] A match 1536 detects the reserved word “forward,”
representing a plurality predicate relation. The match 1536
returns the plurality-terminal 1502. The match 1536 triggers
a forward-classes-predicate 1538, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum forward-classes 1032
of the class module 1028.

[0198] A match 1540 detects the reserved word “handle,”
representing a plurality predicate relation. The match 1540
returns the plurality-terminal 1502. The match 1540 triggers
a handles-predicate 1542, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum handles 1266 of the class member-
datum 1052.

[0199] A match 1544 detects the reserved word “handles,”
representing a plurality predicate relation. The match 1544

US 2007/0239773 Al

returns the plurality-terminal 1502. The match 1544 triggers
the handles-predicate 1542, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum handles 1266 of the class member-
datum 1052.

[0200] A match 1546 detects the reserved word “host,”
representing a singleton predicate relation. The match 1546
returns the singleton-terminal 1470. The match 1546 trig-
gers a host-predicate 1548, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum host 1034 of the class module 1028.
[0201] A match 1550 detects the reserved word “indi-
cates,” representing a singleton predicate relation. The
match 1550 returns the singleton-terminal 1470. The match
1550 triggers an indicates-predicate 1552, which provides
an instance of a specialization of the predicator 1338 suit-
able for assignment to the member datum indicates 1244 of
the class member-function 1048.

[0202] A match 1554 detects the reserved word “inhibit-
predicator,” representing a qualifier predicate relation. The
match 1554 returns the qualifier-terminal 1480. The match
1554 triggers an inhibit-predicator-predicate 1556, which
provides an instance of a specialization of the predicator
1338 suitable for assignment to the member datum inhibit-
predicator 1262 of the class member-datum 1052.

[0203] A match 1558 detects the reserved word “init,”
representing a singleton predicate relation. The match 1558
returns the singleton-terminal 1470. The match 1558 trig-
gers an init-predicate 1560, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum init 1250 of the class member-datum
1052.

[0204] A match 1562 detects the reserved word “inline,”
representing a plurality predicate relation. The match 1562
returns the plurality-terminal 1502. The match 1562 triggers
an inline-definition-predicate 1564, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum inline-definition 1240
of the class member-function 1048.

[0205] Refer to FIG. 38. A match 1566 detects the
reserved word “const,” representing a qualifier predicate
relation. The match 1566 returns the qualifier-terminal 1480.
The match 1566 triggers an is-const-predicate 1568, which
provides an instance of a specialization of the predicator
1338 suitable for assignment to the member datum is-const
1224 of the class operand 1042.

[0206] A match 1570 detects the reserved word “meron,”
representing a qualifier predicate relation. The match 1570
returns the qualifier-terminal 1480. The match 1570 triggers
an is-meron-predicate 1572, which provides an instance of
a specialization of the predicator 1338 suitable for assign-
ment to the member datum is-meron 1246 of the class
member-datum 1052.

[0207] A match 1574 detects the reserved word “mutable,”
representing a qualifier predicate relation. The match 1574
returns the qualifier-terminal 1480. The match 1574 triggers
an is-mutable-predicate 1576, which provides an instance of
a specialization of the predicator 1338 suitable for assign-
ment to the member datum is-mutable 1248 of the class
member-datum 1052.

[0208] A match 1578 detects the reserved word “pure,”
representing a qualifier predicate relation. The match 1578
returns the qualifier-terminal 1480. The match 1578 triggers
an is-pure-predicate 1580, which provides an instance of a

Oct. 11, 2007

specialization of the predicator 1338 suitable for assignment
to the member datum is-pure 1238 of the class member-
function 1048.

[0209] A match 1582 detects the reserved word “static,”
representing a qualifier predicate relation. The match 1582
returns the qualifier-terminal 1480. The match 1582 triggers
an is-static-predicate 1584, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum is-static 1234 of the class member-
function 1048.

[0210] A match 1586 detects the reserved word “virtual,”
representing a qualifier predicate relation. The match 1586
returns the qualifier-terminal 1480. The match 1586 triggers
an is-virtual-predicate 1588, which provides an instance of
a specialization of the predicator 1338 suitable for assign-
ment to the member datum is-virtual 1236 of the class
member-function 1048.

[0211] A match 1590 detects the reserved word “commit,”
representing a qualifier predicate relation. The match 1590
returns the qualifier-terminal 1480. The match 1590 triggers
a markup-commit-predicate 1592, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum markup-commit 1198
of the class class 1036.

[0212] A match 1594 detects the reserved word “config-
ure,” representing a qualifier predicate relation. The match
1594 returns the qualifier-terminal 1480. The match 1594
triggers a markup-configure-predicate 1596, which provides
an instance of a specialization of the predicator 1338 suit-
able for assignment to the member datum markup-configure
1196 of the class class 1036.

[0213] A match 1598 detects the reserved word “note,”
representing a plurality predicate relation. The match 1598
returns the plurality-terminal 1502. The match 1598 triggers
a notes-predicate 1600, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum notes 1118 of the class entity 1026.
[0214] A match 1602 detects the reserved word “notes,”
representing a plurality predicate relation. The match 1602
returns the plurality-terminal 1502. The match 1602 triggers
the notes-predicate 1600, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum notes 1118 of the class entity 1026.
[0215] A match 1604 detects the reserved word “parser,”
representing a singleton predicate relation. The match 1604
returns the singleton-terminal 1470. The match 1604 trig-
gers a parser-id-predicate 1606, which provides an instance
of'a specialization of the predicator 1338 suitable for assign-
ment to the member datum parser-id 1148 of the class
module 1028.

[0216] A match 1608 detects the reserved word “passage,”
representing a singleton predicate relation. The match 1608
returns the singleton-terminal 1470. The match 1608 trig-
gers a passage-predicate 1610, which provides an instance of
a specialization of the predicator 1338 suitable for assign-
ment to the member datum passage 1114 of the class entity
1026.

[0217] A match 1612 detects the reserved word “down-
cast,” representing a qualifier predicate relation. The match
1612 returns the qualifier-terminal 1480. The match 1612
triggers a provides-downcast-predicate 1614, which pro-
vides an instance of a specialization of the predicator 1338
suitable for assignment to the member datum provides-
downcast 1204 of the class class 1036.

US 2007/0239773 Al

[0218] A match 1616 detects the reserved word “purpose,”
representing a singleton predicate relation. The match 1616
returns the singleton-terminal 1470. The match 1616 trig-
gers a purpose-predicate 1618, which provides an instance
of a specialization of the predicator 1338 suitable for assign-
ment to the member datum purpose 1112 of the class entity
1026.

[0219] A match 1620 detects the reserved word “reflec-
tor,” representing a singleton predicate relation. The match
1620 returns the singleton-terminal 1470. The match 1620
triggers a reflector-id-predicate 1622, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum reflector-id 1146 of the
class module 1028.

[0220] A match 1624 detects the reserved word “remark,”
representing a plurality predicate relation. The match 1624
returns the plurality-terminal 1502. The match 1624 triggers
a remarks-predicate 1626, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum remarks 1116 of the class entity 1026.
[0221] A match 1628 detects the reserved word “remarks,”
representing a plurality predicate relation. The match 1628
returns the plurality-terminal 1502. The match 1628 triggers
the remarks-predicate 1626, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum remarks 1116 of the class entity 1026.
[0222] A match 1630 detects the reserved word “resolver,”
representing a singleton predicate relation. The match 1630
returns the singleton-terminal 1470. The match 1630 trig-
gers a resolver-id-predicate 1632, which provides an
instance of a specialization of the predicator 1338 suitable
for assignment to the member datum resolver-id 1150 of the
class module 1028.

[0223] A match 1634 detects the reserved word “resolver-
id-field,” representing a singleton predicate relation. The
match 1634 returns the singleton-terminal 1470. The match
1634 triggers a resolver-id-field-predicate 1636, which pro-
vides an instance of a specialization of the predicator 1338
suitable for assignment to the member datum resolver-id-
field 1152 of the class module 1028.

[0224] A match 1638 detects the reserved word “resolver-
root,” representing a singleton predicate relation. The match
1638 returns the singleton-terminal 1470. The match 1638
triggers a resolver-root-id-predicate 1640, which provides
an instance of a specialization of the predicator 1338 suit-
able for assignment to the member datum resolver-root-id
1154 of the class module 1028.

[0225] A match 1642 detects the reserved word “tag,”
representing a plurality predicate relation. The match 1642
returns the plurality-terminal 1502. The match 1642 triggers
a tags-predicate 1644, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum tags 1206 of the class class 1036.
[0226] A match 1646 detects the reserved word “tags,”
representing a plurality predicate relation. The match 1646
returns the plurality-terminal 1502. The match 1646 triggers
the tags-predicate 1644, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum tags 1206 of the class class 1036.
[0227] A match 1648 detects the reserved word “term,”
representing a singleton predicate relation. The match 1648
returns the singleton-terminal 1470. The match 1648 trig-
gers a term-predicate 1650, which provides an instance of a

Oct. 11, 2007

specialization of the predicator 1338 suitable for assignment
to the member datum term 1108 of the class entity 1026.
[0228] A match 1652 detects the reserved word “title,”
representing a singleton predicate relation. The match 1652
returns the singleton-terminal 1470. The match 1652 trig-
gers a title-predicate 1654, which provides an instance of a
specialization of the predicator 1338 suitable for assignment
to the member datum title 1110 of the class entity 1026.
[0229] A match 1656 detects the reserved word “viewer,”
representing a singleton predicate relation. The match 1656
returns the singleton-terminal 1470. The match 1656 trig-
gers a viewer-id-predicate 1658, which provides an instance
of'a specialization of the predicator 1338 suitable for assign-
ment to the member datum viewer-id 1136 of the class
module 1028.

5.2.2 Lexical Analysis Double-Quote State

[0230] Refer to FIG. 39. The state double-quote 1350
corresponds to specialized lexical analysis in the context of
double-quoted text.

[0231] A match 1660 detects a closing double quote. The
match 1660 returns a quote-terminal 1662. The quote-
terminal 1662 is associated with an instance of the parse-text
1336. The match 1660 transfers the lexer state to the initial
1348. The match 1660 triggers a quote-close 1664, which
terminates accumulation of quote text, associating the accu-
mulated quote text with the instance of the parse-text 1336.
[0232] A match 1666 detects an escaped double quote. The
match 1666 triggers an escape-double-quote 1668, which
accumulates a literal double quote to the quote text.
[0233] A match 1670 detects a C-style escape code for a
newline. The match 1670 triggers an escape-newline 1672
which accumulates a newline to the quote text.

[0234] A match 1674 detects a C-style escape code for a
tab. The match 1674 triggers an escape-tab 1676, which
accumulates a tab to the quote text.

[0235] A match 1678 detects a C-style escape code for a
backslash (the escape character). The match 1678 triggers an
escape-escape 1680, which accumulates a literal backslash
to the quote text.

[0236] A match 1682 detects a newline, which is invalid.
The match 1682 triggers a quote-newline 1684, which
results in a parse error.

[0237] A match 1686 matches any character. The match
1686 triggers a quote-accumulate 1688, which accumulates
the matched character to the quote text.

5.2.3 Lexical Analysis Single-Quote State

[0238] Refer to FIG. 40. The state single-quote 1352
corresponds to specialized lexical analysis in the context of
single-quoted text.

[0239] A match 1690 detects a closing single quote. The
match 1690 returns the quote-terminal 1662. The match
1690 transfers the lexer state to the initial 1348. The match
1690 triggers the quote-close 1664, which terminates accu-
mulation of quote text, associating the accumulated quote
text with the instance of the parse-text 1336 associated with
the quote-terminal 1662.

[0240] A match 1692 detects an escaped single quote. The
match 1692 triggers an escape-single-quote 1694, which
accumulates a literal single quote to the quote text.

US 2007/0239773 Al

[0241] A match 1696 detects a C-style escape code for a
newline. The match 1696 triggers the escape-newline 1672,
which accumulates a newline to the quote text.

[0242] A match 1698 detects a C-style escape code for a
tab. The match 1698 triggers the escape-tab 1676, which
accumulates a tab to the quote text.

[0243] A match 1700 detects a C-style escape code for a
backslash (the escape character). The match 1700 triggers
the escape-escape 1680, which accumulates a literal back-
slash to the quote text.

[0244] A match 1702 detects a newline, which is invalid.
The match 1702 triggers the quote-newline 1684, which
results in a parse error.

[0245] A match 1704 matches any character. The match
1704 triggers the quote-accumulate 1688, which accumu-
lates the matched character to the quote text.

5.2.4 Lexical Analysis Multiline-Quote State

[0246] Refer to FIG. 41. The state multi-quote 1354 cor-
responds to specialized lexical analysis in the context of a
multi-line quote.

[0247] A match 1706 detects the terminator of a multi-line
quote. The match 1706 returns the quote-terminal 1662. The
match 1706 transfers the lexer state to the initial 1348. The
match 1706 triggers the quote-close 1664, which terminates
accumulation of quote text, associating the accumulated
quote text with the instance of the parse-text 1336 associated
with the quote-terminal 1662.

[0248] A match 1708 detects a C-style escape for a back-
quote. The match 1708 triggers an escape-backquote 1710,
which accumulates a literal backquote to the quote text.
[0249] A match 1712 detects a C-style escape code for a
newline. The match 1712 triggers the escape-newline 1672,
which accumulates a newline to the quote text.

[0250] A match 1714 detects a C-style escape code for a
tab. The match 1714 triggers the escape-tab 1676, which
accumulates a tag to the quote text.

[0251] A match 1716 detects a C-style escape code for a
backslash (the escape character). The match 1716 triggers
the escape-escape 1680, which accumulates a literal back-
slash to the quote text.

[0252] A match 1718 detects a newline, which is permis-
sible in a multi-line quote. The match 1718 triggers an
accumulate-newline 1720, which increments the parser’s
internal line counter and accumulates a newline to the quote
text.

[0253] A match 1722 matches any character. The match
1722 triggers the quote-accumulate 1688, which accumu-
lates the matched character to the quote text.

5.3 Grammar

[0254] FIG. 42 begins a depiction of exemplary grammar
rules for the grammar 1002.

[0255] A rule 1724 produces a start 1726 from an empty
expression. The rule 1724 indicates that the empty expres-
sion is a valid expression in the grammar 1002.

[0256] A rule 1728 produces the start 1726. The rule 1728
consumes the start 1726 and a module 1730. The rule 1728
indicates a valid expression followed by a module 1730 is a
valid expression in the grammar 1002. The module 1730
corresponds to a module specification. The module 1730

Oct. 11, 2007

represents an instance of the module 1028. The rule 1728
triggers an accept-module 1732, which clears the internal
module scope.

[0257] A rule 1734 produces the start 1726. The rule 1734
consumes the start 1726 and a scoped-class 1736. The rule
1734 indicates that a valid expression followed by a scoped-
class 1736 is a valid expression. The scoped-class 1736
corresponds to a class scope specification. The scoped-class
1736 represents an instance of the class 1036. This rule
permits the specification of a module and even a class to be
distributed across several expressions (an thus across several
files).

[0258] A rule 1738 produces the module 1730. The rule
1738 consumes a module-body 1740 and the close-curly-
terminal 1374. The rule 1738 indicates the successful ter-
mination of a module-body 1740 by close-curly-terminal
1374. The module-body 1740 corresponds to an unclosed
module specification, capable of accepting class specifica-
tions, host member specifications, class predicate specifica-
tions, or a module close terminal. The module-body 1740
represents an instance of the module 1028.

[0259] A rule 1742 produces the module-body 1740. The
rule 1742 consumes the id-terminal 1460, a optional-predi-
cates 1744, and the open-curly-terminal 1370. The optional-
predicates 1744 represents an instance of the predicator-
sequence 1346. The rule 1742 triggers a new-module 1746,
retrieves a previously specified module identified by the
id-terminal 1460), or, lacking a prior specification, instan-
tiates a new instance of the module 1028. The module-body
1740 corresponds to the module identifier, optional predi-
cates, and module open terminal of a module specification.
The module-body 1740 corresponds to an unclosed module
specification, capable of accepting class specifications, host
member specifications, class predicate specifications, or a
module close terminal. The new-module 1746 applies the
predicator-sequence 1346, if any. The module instance is
assigned to a current module scope in the parser 1008, and
is associated with the left-hand side module-body 1740.
[0260] A rule 1748 produces the module-body 1740. The
rule 1748 consumes the module-body 1740 and a class 1750.
The class 1750 represents an instance of the class 1036. The
rule 1748 corresponds to the selection of a class specifica-
tion for the module content of a module specification. The
rule 1748 triggers a module-accept-class 1752, which takes
note that the class instance associated with the class 1750 is
a root class of the module instance associated with the
module-body 1740.

[0261] A rule 1754 produces the module-body 1740. The
rule 1754 consumes the module-body 1740 and a members
1756. The members 1756 represents an instance of the
parse-members 1330. The rule 1754 corresponds to the
selection of a host member specification for the module
content of a module specification. The rule 1754 triggers a
module-accept-members 1758, which accumulates the asso-
ciated instance of the parse-members 1330 to the module
member datum host 1034, an instance of the host-class 1040.
Members specified in module scope are thus accumulated to
the module host.

[0262] A rule 1760 produces the module-body 1740. The
rule 1760 consumes the module-body 1740 and a predicates
1762. The predicates 1762 represents an instance of the
predicator-sequence 1346. The rule 1760 corresponds to the
selection of a module predicates specification for the module
content of a module specification. The rule 1760 triggers a

US 2007/0239773 Al

module-accept-predicates 1764, which applies the associ-
ated instance of the predicator-sequence 1346 to the instance
of the host-class 1040 indicated by the host 1034 of the
instance of the module 1028 associated with the module-
body 1740. Thus predicates specified in module scope are
applied to the module host.

[0263] A rule 1766 produces the scoped-class 1736. The
rule 1766 consumes a scoped-class-body 1768 and the
close-curly-terminal 1374. The scoped-class 1736 corre-
sponds to a class scope specification. The scoped-class-body
1768 represents an instance of the class 1036. The rule 1766
indicates the closing of a class scope.

[0264] A rule 1770 produces the scoped-class-body 1768.
The rule 1770 consumes the id-terminal 1460, the scope-
terminal 1366, the id-terminal 1460, and the open-curly-
terminal 1370. The scoped-class-body 1768 corresponds to
the scope module identifier, scope terminal, scope class
identifier, and class open terminal of a class scope specifi-
cation. The scoped-class-body 1768 is capable of accepting
members specifications, and class specifications. In an alter-
native embodiment, class predicate specifications could also
be accepted. The rule 1770 indicates the opening of a class
scope. The rule 1770 triggers a resolve-scoped-class 1772,
which resolves the first id-terminal 1460 to a module. The
second id-terminal 1460 is then resolved to a class in the
resolved module. The resolved class is associated with the
left-hand side scoped-class-body 1768. The resolved module
is assigned to the current module scope.

[0265] A rule 1774 produces the scoped-class-body 1768.
The rule 1774 consumes the scoped-class-body 1768 and the
class 1750. The rule 1774 corresponds to the selection of a
class specification in a class content specification. The rule
1774 indicates the specification of a class within a class
scope, thus providing genus-species associations between
the containing and contained class. The rule 1774 triggers a
class-accept-class 1776, which takes note of the genus-
species relationships by assignments to the genera 1176 of
the contained class (associated with the class 1750 and the
species 1180 of the containing class (associated with the
scoped-class-body 1768).

[0266] A rule 1778 produces the scoped-class-body 1768.
The rule 1778 consumes the scoped-class-body 1768 and the
members 1756. The rule 1778 corresponds to the selection
of a members specification in a class content specification.
The rule 1778 indicates the specification of members within
a class scope. The rule 1778 triggers a class-accept-members
1780, which accumulates the members associated with the
members 1756 to the class associated with the scoped-class-
body 1768.

[0267] Refer to FIG. 43. A rule 1782 produces the class
1750. The rule 1782 consumes a class-body 1784 and the
close-curly-terminal 1374. The class 1750 corresponds to a
class specification. The class-body 1784 represents an
instance of the class 1036. The rule 1782 indicates the
closing of a class scope.

[0268] A rule 1786 produces the class-body 1784. The rule
1786 consumes the id-terminal 1460, the optional-predicates
1744, and the open-curly-terminal 1370. The class-body
1784 corresponds to an unclosed class specification, capable
of accepting a class members specification, a class specifi-
cation, and a class predicates specification. The rule 1782
indicates the opening of a class scope. The rule 1786 triggers
a new-class 1788, creates a new instance of the class 1036,
accumulates the class to the prevailing module scope, and

Oct. 11, 2007

applies the associated predicates, if any, to the new class.
The newly created class is associated with the left-hand side
class-body 1784.

[0269] A rule 1790 produces the class-body 1784. The rule
1790 consumes the class-body 1784 and the class 1750. The
rule 1790 corresponds to the selection of a class specifica-
tion in a class content specification. The rule 1790 indicates
the specification of a class within a class scope, as already
described for the rule 1774. The rule 1790 triggers the
class-accept-class 1776.

[0270] Arule 1792 produces the class-body 1784. The rule
1792 consumes the class-body 1784 and the members 1756.
The rule 1792 corresponds to the selection of a members
specification in a class content specification. The rule 1792
indicates the specification of members within a class scope,
as already described for the rule 1778. The rule 1792 triggers
the class-accept-members 1780.

[0271] Arule 1794 produces the class-body 1784. The rule
1794 consumes the class-body 1784 and the predicates
1762. The rule 1794 corresponds to the selection of a class
predicates specification in a class content specification. The
rule 1794 triggers a class-accept-predicates 1796, which
applies the associated predicates to the associated class.

[0272] A rule 1798 produces the members 1756. The rule
1798 consumes a members-body 1800 and the semicolon-
terminal 1402. The members 1756 corresponds to a host
members specification and a class member specification.
The members-body 1800 represents an instance of the
parse-members 1330. The rule 1798 indicates the termina-
tion of the specification of one or more members.

[0273] Arule 1802 produces the members-body 1800. The
rule 1802 consumes a type 1804 and a member 1806. The
type 1804 represents an instance of the type 1054. The
members-body 1800 corresponds to an unclosed members
specification, capable of accepting a member specification.
The rule 1802 corresponds to the acceptance of a member
specification by a host members specification and a class
members specification. The rule 1802 indicates the specifi-
cation of one or more members. The member 1806 repre-
sents an instance of the member 1046. The rule 1802 triggers
a new-members 1808, which creates an instance of the
parse-members 1330. The associated type initializes the new
instance of the parse-members 1330. The new instance of
the parse-members 1330 is associated with the left-hand side
members-body 1800. The instance of the member 1046
associated with the member 1806 is accumulated to the new
instance of the parse-members 1330.

[0274] Arule 1810 produces the members-body 1800. The
rule 1810 consumes the members-body 1800, the comma-
terminal 1406, and the member 1806. The rule 1810 corre-
sponds to the acceptance of an additional member specifi-
cation by a host members specification and a class members
specification. The rule 1810 indicates an additional member
specification sharing a type specification with the preceding
member specification. The rule 1810 triggers a append-
members 1812, which accumulates the instance of the
member 1046 associated with the member 1806 to the
instance of the parse-members 1330 associated with the
right-hand-side members-body 1800.

[0275] A rule 1814 produces the member 1806. The rule
1814 consumes a datum 1816. The datum 1816 corresponds
to a datum specification. The rule 1814 corresponds to the
selection of a datum specification for a member specifica-

US 2007/0239773 Al

tion. The datum 1816 represents an instance of the member
1046. The rule 1814 indicates the acceptability of a member
datum as a member.

[0276] A rule 1818 produces the member 1806. The rule
1818 consumes a method 1820. The method 1820 corre-
sponds to a method specification. The rule 1818 corresponds
to the selection of a method specification for a member
specification. The method 1820 represents an instance of the
member 1046. The rule 1818 indicates the acceptability of a
member function as a member.

[0277] A rule 1822 produces the datum 1816. The rule
1822 consumes the id-terminal 1460 and the optional-
predicates 1744. The datum 1816 corresponds to a datum
specification. The optional-predicates 1744 corresponds to
an optional datum predicates specification. The rule 1822
indicates the specification of a member datum. The rule
1822 triggers a new-datum 1824, which instantiates a new
instance of the member-datum 1052, which is associated
with the datum 1816. The associated predicates, if any, are
applied to the new datum.

[0278] A rule 1826 produces the method 1820. The rule
1826 consumes the id-terminal 1460, a args 1828, and the
optional-predicates 1744. The method 1820 corresponds to
a method specification. The args 1828 corresponds to an
arguments specification. The optional-predicates 1744 cor-
responds to an optional method predicates specification. The
args 1828 represents an instance of the parse-arguments
1332. The rule 1826 indicates the specification of a member
function. The rule 1826 triggers a new-method 1830, which
instantiates a new instance of the member-function 1048,
which is associated with the method 1820. The associated
predicates, if any, are applied to the new member function.
[0279] A rule 1832 produces the args 1828. The rule 1832
consumes the open-paren-terminal 1386 and the close-
paren-terminal 1390. The args 1828 corresponds to an
arguments specification. The rule 1832 indicates the accept-
ability of an empty arguments list. The rule 1832 triggers an
empty-args 1834, which creates a new instance of the
parse-arguments 1332. The new instance of the parse-
arguments 1332 is associated with the args 1828.

[0280] A rule 1836 produces the args 1828. The rule 1836
consumes a args-body 1838 and the close-paren-terminal
1390. The args 1828 corresponds to an arguments specifi-
cation. The args-body 1838 corresponds to an unclosed
arguments specification, capable of accepting an argument
specification. The args-body 1838 represents an instance of
the parse-arguments 1332. The rule 1836 indicates the
closing of a non-empty arguments list.

[0281] A rule 1840 produces the args-body 1838. The rule
1840 consumes the open-paren-terminal 1386 and a arg
1842. The arg 1842 corresponds to an argument specifica-
tion. The args-body 1838 corresponds to an unclosed argu-
ments specification, capable of accepting an argument speci-
fication. The rule 1840 indicates the opening of a non-empty
arguments list. The arg 1842 represents an instance of the
argument 1044. The rule 1840 triggers a new-args 1844,
which creates a new instance of the parse-arguments 1332.
The associated instance of the argument 1044 is accumu-
lated to the new instance of the parse-arguments 1332. The
new instance of the parse-arguments 1332 is associated with
the args-body 1838.

[0282] A rule 1846 produces the args-body 1838. The rule
1846 consumes the args-body 1838, the comma-terminal
1406, and the arg 1842. The arg 1842 corresponds to an

Oct. 11, 2007

argument specification. The args-body 1838 corresponds to
an unclosed arguments specification, capable of accepting
an argument specification. The rule 1846 indicates the
continuation of a non-empty arguments list. The rule 1846
triggers an append-args 1848, which accumulates the
instance of the argument 1044 associated with the arg 1842
to the instance of the parse-arguments 1332 associated with
the right-hand-side args-body 1838. The instance of the
parse-arguments 1332 is associated with the left-hand-side
args-body 1838.

[0283] A rule 1850 produces the arg 1842. The rule 1850
consumes the type 1804 and the optional-predicates 1744.
The arg 1842 corresponds to an argument specification. The
type 1804 corresponds to a type specification. The optional-
predicates 1744 corresponds to an optional argument predi-
cates specification. The rule 1850 indicates the specification
of a new argument. The rule 1850 triggers a new-mod-arg
1852, which creates a new instance of the argument 1044.
The associated instance of the type 1054 is assigned to the
type 1226 of the new instance of the argument 1044. The
predicates, if any, are applied to the new instance of the
argument 1044. The new instance of the argument 1044 is
associated with the arg 1842.

[0284] A rule 1854 produces the arg 1842. The rule 1854
consumes the type 1804, the id-terminal 1460, and the
optional-predicates 1744. The arg 1842 corresponds to an
argument specification. The type 1804 corresponds to a type
specification. The optional-predicates 1744 corresponds to
an optional argument predicates specification. The rule 1854
indicates the specification of a new argument with a dummy
identifier. The rule 1854 triggers a new-mod-arg-dummy
1856, which creates a new instance of the argument 1044.
The associated instance of the type 1054 is assigned to the
type 1226 of the new instance of the argument 1044. The
predicates, if any, are applied to the new instance of the
argument 1044. The text of the id-terminal 1460 is assigned
to the scope-id 1222. The new instance of the argument 1044
is associated with the arg 1842.

[0285] Refer to FIG. 44. A rule 1858 produces the
optional-predicates 1744. The rule 1858 indicates the
acceptability of the absence of predicates. The optional-
predicates 1744 corresponds to an optional module predi-
cates specification, to an optional class predicates specifi-
cation, to an optional datum predicates specification, to an
optional method predicates specification, and an optional
arguments predicates specification. The rule 1858 triggers an
empty-predicates 1860, which associates a null pointer with
the optional-predicates 1744.

[0286] A rule 1862 produces the optional-predicates 1744.
The rule 1862 consumes the predicates 1762. The predicates
1762 corresponds to a predicates specification. The instance
of the predicator-sequence 1346 associated with the predi-
cates 1762 is associated with the optional-predicates 1744.
[0287] A rule 1864 produces the predicates 1762. The rule
1864 consumes a predicates-body 1866 and the close-
square-terminal 1382. The predicates 1762 corresponds to a
predicates specification. The predicates-body 1866 corre-
sponds to an unclosed predicates specification, capable of
accepting a predicate specification. The rule 1864 indicates
the completion of a predicates specification. The predicates-
body 1866 represents an instance of the predicator-sequence
1346, which is associated with the predicates 1762.

[0288] A rule 1868 produces the predicates-body 1866.
The rule 1868 consumes the open-square-terminal 1378 and

US 2007/0239773 Al

a predicate 1870. The predicates-body 1866 corresponds to
an unclosed predicates specification, capable of accepting a
predicate specification. The predicate 1870 corresponds to a
predicate specification, which is accepted by the unclosed
predicates specification. The rule 1868 indicates the opening
of a predicate scope. The predicate 1870 represents an
instance of the predicator 1338. The rule 1868 triggers a
new-predicates 1872, which creates a new instance of the
predicator-sequence 1346, and accumulates the associated
instance of the predicator 1338 to the new instance of the
predicator-sequence 1346. The new instance of the predica-
tor-sequence 1346 is associated with the predicates-body
1866.

[0289] A rule 1874 produces the predicates-body 1866.
The rule 1874 consumes the predicates-body 1866, the
semicolon-terminal 1402, and the predicate 1870. The predi-
cates-body 1866 corresponds to an unclosed predicates
specification, capable of accepting an additional predicate
specification. The predicate 1870 corresponds to an addi-
tional predicate specification, which is accepted by the
unclosed predicates specification. The rule 1874 indicates
the specification of an additional predicate in a predicate
scope. The rule 1874 triggers an append-predicate 1876,
which accumulates the instance of the predicator 1338
associated with the predicate 1870 to the instance of the
predicator-sequence 1346 associated with the right-hand-
side predicates-body 1866. The instance of the predicator-
sequence 1346 is associated with the left-hand-side predi-
cates-body 1866.

[0290] A rule 1878 produces the predicates-body 1866.
The rule 1878 consumes the predicates-body 1866 and the
semicolon-terminal 1402. The rule 1878 indicates the
acceptability of a trailing semicolon, normally a separator.
This is “syntactic sugar” provided for the convenience of the
developer.

[0291] A rule 1880 produces the predicate 1870. The rule
1880 consumes a qualifier 1882. The predicate 1870 corre-
sponds to a predicate specification. The qualifier 1882
corresponds to a qualifier specification. The rule 1880 cor-
responds to the selection of a qualifier specification for a
predicate specification and for an additional predicate speci-
fication. The rule 1880 indicates the acceptability of a
qualifier as a predicate. The qualifier 1882 represents an
instance of the predicator-qualifier 1340. The instance of the
predicator-qualifier 1340 is associated with the predicate
1870.

[0292] A rule 1884 produces the predicate 1870. The rule
1884 consumes a singleton 1886. The predicate 1870 cor-
responds to a predicate specification. The singleton 1886
corresponds to a singleton specification. The rule 1884
corresponds to the selection of a singleton specification for
a predicate specification and for an additional predicate
specification. The rule 1884 indicates the acceptability of a
singleton as a predicate. The singleton 1886 represents an
instance of the predicator-singleton 1342. The instance of
the predicator-singleton 1342 is associated with the predi-
cate 1870.

[0293] A rule 1888 produces the predicate 1870. The rule
1888 consumes a plurality 1890. The predicate 1870 corre-
sponds to a predicate specification. The plurality 1890
corresponds to a plurality specification. The rule 1888
corresponds to the selection of a plurality specification for a
predicate specification and for an additional predicate speci-
fication. The rule 1888 indicates the acceptability of a

Oct. 11, 2007

plurality as a predicate. The plurality 1890 represents an
instance of the predicator-plurality 1344. The instance of the
predicator-plurality 1344 is associated with the predicate
1870.

[0294] A rule 1892 produces the qualifier 1882. The rule
1892 consumes the qualifier-terminal 1480. The qualifier
1882 corresponds to a qualifier specification. The associated
instance of the predicator-qualifier 1340 represented by the
qualifier-terminal 1480 is associated with the qualifier 1882.
[0295] A rule 1894 produces the singleton 1886. The rule
1894 consumes the singleton-terminal 1470 and a object
1896. The singleton 1886 corresponds to a singleton speci-
fication. The object 1896 corresponds to an object expres-
sion. The object 1896 represents an instance of the parse-text
1336. The rule 1894 triggers a singleton-object 1898, which
assigns the object text to the instance of the predicator-
singleton 1342 associated with the singleton-terminal 1470.
The instance of the predicator-singleton 1342 is associated
with the singleton 1886.

[0296] A rule 1900 produces the plurality 1890. The rule
1900 consumes the plurality-terminal 1502 and the object
1896. The plurality 1890 corresponds to a plurality specifi-
cation. The object 1896 corresponds to an object expression.
The rule 1900 triggers a plurality-object 1902, which accu-
mulates the object text to the instance of the predicator-
plurality 1344 associated with the plurality-terminal 1502.
The instance of the predicator-plurality 1344 is associated
with the plurality 1890.

[0297] A rule 1904 produces the plurality 1890. The rule
1904 consumes the plurality 1890, the comma-terminal
1406, and the object 1896. The plurality 1890 corresponds
to a plurality specification. The object 1896 corresponds to
an additional object expression. The rule 1904 triggers a
plurality-append-object 1906, which accumulates the object
text to the instance of the predicator-plurality 1344 associ-
ated with the right-hand-side plurality 1890. The instance of
the predicator-plurality 1344 is associated with the left-
hand-side plurality 1890.

[0298] A rule 1908 produces the plurality 1890. The rule
1908 consumes the plurality 1890 and the comma-terminal
1406. The rule 1908 indicates the acceptability of a trailing
comma, normally a separator. This is “syntactic sugar”
provided for the convenience of the developer.

[0299] A rule 1910 produces the object 1896. The object
1896 corresponds to an object expression. The rule 1910
consumes a text 1912. The text 1912 represents an instance
of the parse-text 1336.

[0300] A rule 1914 produces the object 1896. The rule
1914 consumes the object 1896 and the text 1912. The object
1896 corresponds to an object expression. The rule 1914
triggers an append-object-text 1916, which accumulates the
text associated with the text 1912 to the text of the object
1896. This permits C-style string concatenation when adja-
cent strings are separated only by white space.

[0301] A rule 1918 produces the text 1912. The rule 1918
consumes the id-terminal 1460.

[0302] A rule 1920 produces the text 1912. The rule 1920
consumes the quote-terminal 1662.

[0303] Refer to FIG. 45. A rule 1922 produces the type
1804. The type 1804 corresponds to a type specification. The
rule 1922 consumes the void-terminal 1418. The rule 1922
indicates the acceptability of a void type as a type.

[0304] A rule 1924 produces the type 1804. The rule 1924
consumes a compound-type 1926. The type 1804 corre-

US 2007/0239773 Al

sponds to a type specification. The compound-type 1926
corresponds to a compound type specification. The com-
pound-type 1926 represents an instance of the type 1054.
The rule 1924 indicates the acceptability of a compound
type as a type.

[0305] A rule 1928 produces the type 1804. The rule 1928
consumes a reference-type 1930. The type 1804 corresponds
to a type specification. The reference-type 1930 corresponds
to a reference type specification. The reference-type 1930
represents an instance of the reference-type 1068. The rule
1928 indicates the acceptability of a reference type as a type.
[0306] A rule 1932 produces the type 1804. The rule 1932
consumes a value-type 1934. The type 1804 corresponds to
a type specification. The value-type 1934 corresponds to a
value type specification. The value-type 1934 represents an
instance of the value-type 1058. The rule 1932 indicates the
acceptability of a value type as a type.

[0307] A rule 1936 produces the reference-type 1930. The
rule 1936 consumes the id-terminal 1460. The rule 1936
triggers a reference-type 1938, which creates a new instance
of the reference-type 1068. The text associated with the
id-terminal 1460 is assigned to the reference-class-id 1284
of the new instance of the reference-type 1068. The new
instance of the reference-type 1068 is associated with the
reference-type 1930.

[0308] A rule 1940 produces the value-type 1934. The rule
1940 consumes the bit-terminal 1430. The rule 1940 indi-
cates the acceptability of a bit type as a value type.

[0309] A rule 1942 produces the value-type 1934. The rule
1942 consumes the int-terminal 1424. The rule 1942 indi-
cates the acceptability of an integer type as a value type.
[0310] A rule 1944 produces the value-type 1934. The rule
1944 consumes the card-terminal 1436. The rule 1944
indicates the acceptability of a cardinal type as a value type.
[0311] A rule 1946 produces the value-type 1934. The rule
1946 consumes the text-terminal 1442. The rule 1946 indi-
cates the acceptability of a text type as a value type.
[0312] Refer to FIG. 46. A rule 1948 produces the com-
pound-type 1926. The rule 1948 consumes the seq-terminal
1456, the open-angle-terminal 1394, the reference-type
1930, and the close-angle-terminal 1398. The rule 1948
corresponds to acceptance of a reference sequence type
specification. The rule 1948 indicates the acceptability of a
reference sequence type as a compound type. The rule 1948
triggers a reference-seq-type 1950, which creates a new
instance of the reference-sequence-type 1076. The refer-
ence-range 1302 of the new instance of the reference-
sequence-type 1076 is assigned from the instance of the
reference-type 1068 associated with the reference-type
1930. The new instance of the reference-sequence-type 1076
is associated with the compound-type 1926.

[0313] A rule 1952 produces the compound-type 1926.
The rule 1952 consumes the seq-terminal 1456, the open-
angle-terminal 1394, the value-type 1934, and the close-
angle-terminal 1398. The rule 1952 corresponds to accep-
tance of a reference value type specification. The rule 1952
indicates the acceptability of a value sequence type as a
compound type. The rule 1952 triggers a value-seq-type
1954, which creates a new instance of the value-sequence-
type 1074. The value-range 1300 of the new instance of the
value-sequence-type 1074 is assigned from the instance of
the value-type 1058 associated with the value-type 1934.
The new instance of the value-sequence-type 1074 is asso-
ciated with the compound-type 1926.

Oct. 11, 2007

[0314] A rule 1956 produces the compound-type 1926.
The rule 1956 consumes the set-terminal 1448, the open-
angle-terminal 1394, the reference-type 1930, and the close-
angle-terminal 1398. The rule 1956 corresponds to accep-
tance of a reference set type specification. The rule 1956
indicates the acceptability of a reference set type as a
compound type. The rule 1956 triggers a reference-set-type
1958, which creates a new instance of the reference-set-type
1082. The reference-range 1308 of the new instance of the
reference-set-type 1082 is assigned from the instance of the
reference-type 1068 associated with the reference-type
1930. The new instance of the reference-set-type 1082 is
associated with the compound-type 1926.

[0315] A rule 1960 produces the compound-type 1926.
The rule 1960 consumes the set-terminal 1448, the open-
angle-terminal 1394, the value-type 1934, and the close-
angle-terminal 1398. The rule 1960 corresponds to accep-
tance of a value set type specification. The rule 1960
indicates the acceptability of a value set type as a compound
type. The rule 1960 triggers a value-set-type 1962, which
creates a new instance of the value-set-type 1080. The
value-range 1306 of the new instance of the value-set-type
1080 is assigned from the instance of the value-type 1058
associated with the value-type 1934. The new instance of the
value-set-type 1080 is associated with the compound-type
1926.

[0316] A rule 1964 produces the compound-type 1926.
The rule 1964 consumes the map-terminal 1452, the open-
angle-terminal 1394, the value-type 1934, the comma-ter-
minal 1406, the reference-type 1930, and the close-angle-
terminal 1398. The rule 1964 corresponds to acceptance of
an index map type specification. The rule 1964 indicates the
acceptability of an index map type as a compound type. The
rule 1964 triggers an index-map-type 1966, which creates a
new instance of the index-map-type 1086. The value-do-
main 1314 of the new instance of the index-map-type 1086
is assigned from the instance of the value-type 1058 asso-
ciated with the value-type 1934. The reference-range 1316
of the new instance of the index-map-type 1086 is assigned
from the instance of the reference-type 1068 associated with
the reference-type 1930. The new instance of the index-
map-type 1086 is associated with the compound-type 1926.
[0317] A rule 1968 produces the compound-type 1926.
The rule 1968 consumes the map-terminal 1452, the open-
angle-terminal 1394, the value-type 1934, the comma-ter-
minal 1406, the value-type 1934, and the close-angle-ter-
minal 1398. The rule 1968 corresponds to acceptance of a
convert map type specification. The rule 1968 indicates the
acceptability of a conversion map type as a compound type.
The rule 1968 triggers a convert-map-type 1970, which
creates a new instance of the convert-map-type 1092. The
value-domain 1326 of the new instance of the convert-map-
type 1092 is assigned from the instance of the value-type
1058 associated with the first value-type 1934. The value-
range 1328 of the new instance of the convert-map-type
1092 is assigned from the instance of the value-type 1058
associated with the second value-type 1934. The new
instance of the convert-map-type 1092 is associated with the
compound-type 1926.

[0318] A rule 1972 produces the compound-type 1926.
The rule 1972 consumes the map-terminal 1452, the open-
angle-terminal 1394, the reference-type 1930, the comma-
terminal 1406, the reference-type 1930, and the close-angle-
terminal 1398. The rule 1972 corresponds to acceptance of

US 2007/0239773 Al

a bind map type specification. The rule 1972 indicates the
acceptability of a binding map type as a compound type. The
rule 1972 triggers a bind-map-type 1974, which creates a
new instance of the bind-map-type 1090. The reference-
domain 1322 of the new instance of the bind-map-type 1090
is assigned from the instance of the reference-type 1068
associated with the first reference-type 1930. The reference-
range 1324 of the new instance of the bind-map-type 1090
is assigned from the instance of the reference-type 1068
associated with the second reference-type 1930. The new
instance of the bind-map-type 1090 is associated with the
compound-type 1926.

[0319] A rule 1976 produces the compound-type 1926.
The rule 1976 consumes the map-terminal 1452, the open-
angle-terminal 1394, the reference-type 1930, the comma-
terminal 1406, the value-type 1934, and the close-angle-
terminal 1398. The rule 1976 corresponds to acceptance of
a scale map type specification. The rule 1976 indicates the
acceptability of a scale map type as a compound type. The
rule 1976 triggers a scale-map-type 1978, which creates a
new instance of the scale-map-type 1088. The reference-
domain 1318 of the new instance of the scale-map-type 1088
is assigned from the instance of the reference-type 1068
associated with the reference-type 1930. The value-range
1320 of the new instance of the scale-map-type 1088 is
assigned from the instance of the value-type 1058 associated
with the value-type 1934. The new instance of the scale-
map-type 1088 is associated with the compound-type 1926.

6 Example Module Specification

[0320] A module specification suitable for a simple appli-
cation demonstrates the module specification language. The
demonstration application recursively scans one or more
file-system directories looking for media files. The media
files which are detected are presented in a collection of
interlinked HTML pages. The pages of the presentation
reflect the directory organization of the scanned directories.
Each discovered media file is presented in a hypertext link.
The pages of the presentation are suitable for service by a
web server running on a dedicated media device, such as a
digital video recorder. Activation of a link presenting a
particular media file generates a request to play the associ-
ated media on the dedicated media device. The application
may form a potentially useful element for remote, web-
oriented management of a dedicated media device.

[0321] The demonstration application uses a representa-
tion of media files in a file system. The representation uses
an object-oriented module including a family of interrelated
classes. The classes represent files and directories. The
object-oriented module is specified using a module specifi-
cation language.

[0322] Refer to FIG. 47, which depicts a module specifi-
cation represented according to the module specification
language. An example module specification specifies the
module media-scanner 1980, which represents media files
arranged in a file system. The module specification includes
an module predicates specification, specifying a host and a
viewer singleton predicates.

[0323] Inside the module scope, an example host members
specifications is exemplified by a root-files 1982, which is
specified to have a reference set type. The root-files 1982,
specifies a set of instances of the file 1984. The root-files
1982 represents the top-level collection of files in a scan.

Oct. 11, 2007

The root-files 1982 is specified as a meron, providing an
example of a qualifier predicate specification.

[0324] The example specification includes several
examples of class specifications. A class file 1984 represents
a file in a file system, including regular files and directories.
The file 1984 is specified in the module scope and hence has
no genera. A class directory 1986 represents a file system
directory, potentially containing files, some of which may
themselves be directories. The directory 1986 is an example
of a class specification in a class scope, thus indicating the
directory 1986 is a specialization of the file 1984.

[0325] A class top-directory 1988 represents a topmost
directory from which a scan has been initiated. The top-
directory 1988 specializes the directory 1986. A class regu-
lar-file 1990 represents a regular file, i.e. a file which is not
a directory. The regular-file 1990 specializes the file 1984. A
class audio-file 1992 represents an audio file. The audio-file
1992 specializes the regular-file 1990. A class video-file
1994 represents a video file. The video-file 1994 specializes
the regular-file 1990.

[0326] Other member data specifications include, for the
file 1984, a member datum parent 1996 and a member datum
name 1998. The parent 1996 represents the directory con-
taining a particular file. The name 1998 represents the name
associated with a particular file in a particular directory. For
the directory 1986, a member datum files 2000 is specified.
The files 2000 represents the collection of files contained in
a particular directory.

7 Alternative Embodiments

[0327] The exemplary grammar 1002 is presented in a
form which is convenient for ease of processing, but which
may be less convenient for human readability. The provision
of syntax-directed translation is eased by structuring the
grammar so that responders are provided with a single
element per response, with that element fully specialized.
For human readability, however, it may be more convenient
to specify a sequence of possibly heterogenous elements.

[0328] In particular, a module specification consists of a
module identifier, a module open terminal, an optional
module predicate specification, a module content specifica-
tion, and a module close terminal. The module content
specification consists of a mixture of class specifications,
module predicate specifications, and host members specifi-
cations. The preceding description may be convenient for a
human reader, but for syntax directed translation, it is
convenient to structure the grammar so the mixture of class
specifications, module predicate specifications, and host
member specifications is implicitly represented as a collec-
tion of rules, each rule having a representation of an
“unclosed module” and a particular element to accept.

[0329] Thus a rule for a module to accept a class speci-
fication consumes an unclosed module and a class specifi-
cation, producing the unclosed module, which is then avail-
able for additional augmentation or closure. Likewise, a rule
for a module to accept a host members specification con-
sumes an unclosed module and a members specification,
producing the unclosed module, which is then available for
additional augmentation or closure. Likewise for the module
predicates specification. Thus the heterogenous collection of
the module content is transformed to a family of homog-
enous, singular rules each of which operates with an
unclosed module and a particular accepted element.

US 2007/0239773 Al

[0330] The pattern of replacing a heterogeneous collection
with a family of homogeneous, singleton rules operating on
an unclosed container is replicated for the module specifi-
cation, the class specification, the members specification,
and the predicates specification. In an alternative embodi-
ment, the grammar could directly accept the corresponding
heterogeneous collections, but this would necessitate addi-
tional complexity in the responders to the grammar.

[0331] The exemplary grammar does not accept class
predicates in a class scope specification; an alternative
embodiment accepts class predicates in a class scope speci-
fication.

[0332] The specializations of the value-type 1058 in the
exemplary embodiment are representative but far from com-
prehensive. In an alternative embodiments, value types
representing integers, floating point numbers, dates, times,
geographical positions, etc. could be provided. The special-
izations of the compound-type 1070 in the exemplary
embodiment are sufficient for a wide range of applications,
but additional compound types could be provided in an
alternative embodiment. Compound types representing lists,
heaps, multimaps, multisets, graphs, vectors, matrices, etc,
could be provided in an alternative embodiment. Provision
for compound types of compound types could also be
provided in an alternative embodiment. The effect of nested
compound types is readily obtained by providing categorical
classes which simply contain the nested type.

[0333] In the exemplary embodiments of the categorical
classes, member data has been exhibited in a public scope.
The exemplary parser responders utilize categorical class
data accordingly. Exhibition of member data in a public
scope enhances clarity and save space in exposition. In an
alternative embodiment, member data would be defined in a
private scope, and access methods (member functions)
would be provided to manipulate member data indirectly, in
accordance with normal practice in object-oriented pro-
gramming.

I claim:

1. A human-readable module specification capable of
representation as computer-readable data stored on a com-
puter-readable medium, comprising:

a module identifier, a module open terminal, a module

content specification, and a module close terminal;
said module content specification having at least one
specification selected from the group consisting of a
class specification, and a host members specification;
said class specification having a class identifier, a class
open terminal, a class content specification, and a class
close terminal,

said class content specification optionally having one or
more specifications selected from the group consisting
of said class specification, and a class members speci-
fication;
said host members specification and said class members
specification each having a type specification, a mem-
ber specification, at least one optional additional mem-
ber specification,
said additional member specification, if any, having a
preceding member specification, and said additional

Oct. 11, 2007

member specification separated from said preceding
member specification by a member separator termi-
nal, and
and a members terminator terminal;
said member specification selected from the group con-
sisting of a datum specification and a method specifi-
cation;
said datum specification having a datum identifier;
said method specification having a method identifier and
an arguments specification,
said arguments specification having an arguments open
terminal, at least one optional argument specification,
and an arguments close terminal; and
said argument specification, if any, having said type
specification and an optional argument identifier.
2. The module specification of claim 1, additionally
comprising:
said type specification selected from the group consisting
of a void type specification, a value type specification,
a reference type specification, and a compound type
specification; and
said reference type specification having said class iden-
tifier.
3. The module specification of claim 2, additionally
comprising:
said compound type specification selected from the group
consisting of a reference sequence type specification, a
value sequence type specification, a reference set type
specification, a value set type specification, a index
map type specification, a convert map type specifica-
tion, a bind map type specification, and a scale map
type specification.
4. The module specification of claim 1, additionally
comprising:
said module specification optionally having a module
predicates specification;
said module content specification optionally having a
module content predicates specification;
said class specification optionally having a class predi-
cates specification;
said class content specification optionally having a class
content predicates specification;
said datum specification optionally having a datum predi-
cates specification;
said method specification optionally having a method
predicates specification,
said argument specification optionally having an argu-
ment predicates specification;
said module predicates specification, said module content
predicates specification, said class predicates specifi-
cation, said class content predicates specification, said
datum predicates specification, said method predicates
specification, and said argument predicates specifica-
tion, if any, each having a predicate open terminal, a
predicate specification, a predicate close terminal, and,
optionally, at least one additional predicate specifica-
tion,
said additional predicate specification, if any, having a
preceding predicate specification, and said additional
predicate specification separated from said preceding
predicate specification by a predicate separator ter-
minal; and
said predicate specification and said additional predicate
specification, if any, selected from the group consisting

US 2007/0239773 Al

of a qualifier specification, a singleton specification,

and a plurality specification,

said qualifier specification having a qualifier terminal,

said singleton specification having a singleton terminal
and an object expression,

said object expression selected from the group consist-
ing of an identifier and a quote, and

said plurality specification having a plurality terminal
and at least one of said object expressions, said

object expressions separated by an object separator
terminal.

Oct. 11, 2007

5. The module specification of claim 1, additionally

comprising:

a class scope specification having a scope module iden-

tifier corresponding to said module identifier; a scope
terminal; a class scope identifier corresponding to said
class identifier; said class open terminal; said class
content specification; and said class close terminal.

