US 20070256051A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2007/0256051 A1l

Rojer 43) Pub. Date: Nov. 1, 2007
(54) PRODUCING UNITARY CLASS Publication Classification
DEFINITIONS FROM MODULE (51) Int.Cl
SPECIFICATIONS GOGF 9/44 (2006.01)
(52) US. Cli o 717/104
(76) Inventor: é}gl)l S. Rojer, Maplewood, NJ (57) ABSTRACT

A computer-implemented method of processing a module
specification to produce elements of a module definition is
disclosed. A module consists of a collection of interrelated
classes for object-oriented programming. A module speci-
fication is an object-oriented data structure, the elements of
which correspond to classes of a meta-module. A module
definition is a collection of class definitions and other
(21) Appl. No.: 11/786,313 expressions in an object-oriented programming language.
The module specification includes unitary and categorical
class specifications. The class specifications include member
specifications. The module definition may include defini-
tions for a unitary host class, a unitary viewer class, a unitary
Related U.S. Application Data editor class, a unitary factory class, a unitary reflector class,

a unitary auditor class, acceptor class definitions, predicator

(60) Provisional application No. 60/791,128, filed on Apr. class definitions, and categorical class definitions corre-

11, 2006. sponding to the categorical class specifications.

Correspondence Address:
DIMELAB, LLC

BOX 336

MAPLEWOOD, NJ 07040-0336

(22) Filed: Apr. 11, 2007

1000

1004
1002 1008 1010, 19124 code || 7 TS
generator
specification parser @
1014 - gQenerator 1006

generator

Patent Application Publication Nov. 1,2007 Sheet 1 of 45 US 2007/0256051 A1

FIG. 1

- 1000

1002 1008 1010 1912+ code ||
generator

1004

specification) parser | host

~ docs
1014 generator

1006

generator

FIG. 2

dish'®% [host dishHost!®1® |

Sequence<dishModule!®®®> modules!®?® [meron];

Sequence<dishType'®*> types!®®? [meron];

dishElement!0?*

dishEntity'0? {
dishModule'®?®

Sequence<dishClass®®s classes!®? [meron];
Sequence<dishClass!®3¢> forward_classesl03? [meron];

dishHostClass!?? hogt!1034 [meron] ;

}
dishClass!?® ¢
Sequence<dishMember'*®> members!®®® [meron];
dishHostClagg!040 {}
)
dishOperand!®®? [
dishArgumenti® ()
dishMember®®- {
dishMemberFunction®® {
Sequence<dishArgument!®*> arguments!®®® [meron];

}
dishMemberDatum!®? [}

Patent Application Publication Nov. 1,2007 Sheet 2 of 45 US 2007/0256051 A1

FIG. 3

dish!®®. .. .dishElement!®?¢ {
dishType!®* { '
dishVoidTypel®¢ {}
dishvValueType!®® {(

" dishBitTypel®? ()
dishIntegerTypel®®? {}
dishCardinalType!®®? (}
dishTextTypel®® (3.

})

dishReferenceType!®®® (}

dishCompoundType!®’? {
dishSequenceTypel?’? {
dishvalueSequenceType
dishReferenceSequenceType

1074 0
1076)

}

dishSetType!®’® {
dishvValueSetType
dishReferenceSetType!®®? ()}

1080 0

}
dishMapType
dishIndexMapType'®® ()
dishScaleMapType!®®® ()
dishBindMapType!®? (}

dishConvertMapType!®®? (}

1084 {

}

}
dish!'®*® { dimeLogger'®®* 3} ()

FIG. 4

class dishHost!0®

public: // features... '
Sequence<dishModule!®?®*> modules!®??;
dishModule!®?®* module!®® (Text t);
Map<Text, dishModule!®?®*> module_index'?%®;
Boolean accept_modulenoo(dishModuleloza* m) ;
Sequence<dishTypel®®+*> types???;
Boolean accept_type!!®?(dishType!'®®** arg _0);

Patent Application Publication Nov. 1,2007 Sheet 3 of 45 US 2007/0256051 A1

FIG. 5

class dishElement'%%* [
public: // features...
Text source'l®;

};

FIG. 6

class dishEntity'®® : public dishElement!0%¢ [
"public: // features...

Text id!1oe.

Text termll08

Text title!lll,

Text purpose1112

Text passage1114

Sequence<Text> remarks!!i.;

Sequence<Text> notesinﬂ;

Patent Application Publication Nov. 1,2007 Sheet 4 of 45 US 2007/0256051 A1

FIG. 7

class dishModule!®?® . public dishEntity?%%% {
public: // features. '
Sequence<dlshC1ass”56*> classes
Map<Text, dishClass!®®+> class_lndexnz%
Boolean accept_class’!??(dishClass!®®* ¢);
dishClass!®®* resolve_class'?®! (Text id);
Boolean sort_classes''?®(dimeLogger!®®* arg_0};
Sequence<dishClass'®%*> forward_classes!'®?;
Boolean accept_forward classlne(dlshClasslme* £);
Sequence<dishClass!®®*> root_classes!!??;
dishHostClass!?%* host!934;
Boolean accept_host!*?* (dishHostClass®%* h);
Text viewer_id!!®¢;
Text editor_id!*3®.
Text factory_ id!4?;
Text factory_root_id'1%%;
Text auditor_id!%4;
Text reflector_id'¢¢;
Text parser_id***%;
Text resolver_id!!®?;
Text resolver_root_id!?®¢;
Text resolver_id_field!®?;
Text acceptor_idnsﬂ
Text predicator_id“ﬁs;
Text qualifier_id!!®%();
Text singleton_id!!®?();
Text plurality_id®();
Text predicator_sequence_id!!®®();
Text promissary_reference_id“js();
Text depository_id'"%();-
Text predicator_host_idlnz;
public: // cleanup...
virtual ~dishModule!®?8() {
/* cleanup classes!®? +y
' /* cleanup forward_classes
/* cleanup host!0 *; }

1030,

1032 &,

}s

Patent Application Publication Nov. 1,2007 Sheet 5 of 45 US 2007/0256051 A1

FIG. &8

class dishClass?®® : public dishEntity!0?6 {
public: // features...
dishModule'??®* modulell’s;
Sequence<dishClasg!36xs generall’®;
Sequence<dishMember'%%*> members!?38;
Map<Text, dishMember!?*®*> member 1ndex1178
Sequence<dishClass'®%*> species!!®’;
Sequence<dishClass!®®*> genera_closure!!®?;
Sequence<dishClass!'®*®*> species_closure!!8¢;
Boolean is_module_root!!®;
Boolean constructs_markup_element!1%8;
Boolean accepts_markup_element?!??;
Boolean accepts_markup_text!!??;
Boolean accepts markup_predlcate
Boolean markup_configure!l?s;
Boolean markup_commit!!®8;
Boolean is_pure_abstract!??0;
Boolean accept_member!??? (dishMember!®t* arg 0);
Boolean provides_downcast!?%4; -
Sequence<Text> tags1206
Text acceptor_ host_id*?08();
Sequence<Text> audit requlrements1210
Text auditor_ context!?4;
public: // cleanup..
virtual ~dishClass'®3®() {
/* cleanup membersl!®® *,)

1194

};

FIG. 9

1040 1036 4.
7

class dishHostClass public dishClass

FIG. 10

class dishOperand!®®? : public dishEntity!'%%® {
public: // features...
Text scope_handlenlﬂ
Boolean validate_handle!?!®(Text h);
Boolean accept_scope_handle!???(Text h);
Text scope_id!???;
Boolean is_const?!??4;
dishTypel®Si* typel??6.

Patent Application Publication Nov. 1,2007 Sheet 6 of 45 US 2007/0256051 A1

FIG. 11

class dishArgument!®? . public dishOperand!?4? {
public: // features.

Cardinal p051t10n1228

Text arg_default!??,;
};

FIG. 12

class dishMember!?® . public dishOperand!®? {
public: // features.
dishClass??36+ member class:

}:

1232

FIG. I3

class dishMemberFunction'®®® : public dishMemberi®® {
public: // features. :
Booclean is_static
Boolean is v1rtual”3ﬂ
Boolean 1s_pure1238
Sequence<dlshArgument1“4*> arguments
Sequence<Text> inline_ def1n1t10n”4°
Sequence<Text> definition!???;
Text indicates!?%;
public: // cleanup.
virtual ~dishMemberFunction
/* cleanup arguments!?? */ 3

1234

1050

1048() {

}:

Patent Application Publication Nov. 1,2007 Sheet 7 of 45 US 2007/0256051 A1

FIG. 14

class dishMemberDatum!®®? . public dishMember!046 {
public: // features.
Boolean is meron1246
Boolean is_mutablel!?*%; -
Text 1nJ.t1250
Text predicator_ class _igi?s? gy,
Text promlssary_class_ldm54ﬁ,
Text acceptor_class_id!?®%();
Text generic_acceptor_id!?%8();
dishMemberFunctionl?48« acceptor!?®?,
Boolean inhibit_predicator!?%?.
Sequence<Text> tags!?%4;
Sequence<Text> handles?®S,
Boolean accept_handle!?%®(Text t);
};

FIG. 15

1054 1024 t

class dishType public dishElement
public: // features...

Text type_text'?’%();

Boolean is_plurall?’?().

}:

FIG. 16

1056 1054 {

class dishVoidType
public: // features..
Text‘type_text”7°H°

public dishType

’

};

Patent Application Publication

FIG. 17

class dishvalueType!?°®

FIG. 18

class dishBitType!®®®

public: // features...
Text type_text!?76();
};

FIG. 19

class dishIntegerType!®®?

public: // features...
Text type_text!?’8();
}i

FIG. 20

class dishCardinalTypem64

public: // features...
Text type_text!?80();
}s
FIG. 21

class dishText:'I‘ype1066

public: // features...
Text t:ype_text1282 ()
};) ‘

FIG. 22

class dishReferenceType!?®®

public: // features...

Nov. 1,2007 Sheet 8 of 45

: public dishType

: public dishvValueType

: public dishvalueType

1054 {};

1058 {

: public dishValueType!®®® {

1058 {

: public c"lishValueType1058 {

: public dishTypel!®? {

Text reference_class_id'?%;

Text type_text!?8%();
};

US 2007/0256051 A1

Patent Application Publication Nov. 1,2007 Sheet 9 of 45 US 2007/0256051 A1

FIG. 23

class dishCompoundType!®”® : public dishTypel®? {

public: // features...
Sequence<dishType!®®**> parameters
Text type_text!?®0();
Text compound_text!?%?()
Boolean is_plural?®();
dishTypel®+ rangel??,

}i

1288,
’

L

FIG. 24

class dishSequenceType!®’? . public dishCompoundTypew70 {

public: // features...
Text compound_textmgsn

Y

!

FIG. 25

class dishValueSequenceType1074 : public dishSequenceType1072 {
public: // features...
1300,

dishValueType!?38+* value_range :

};

FIG. 26

1076 1072 {

class dishReferenceSegquenceType : public dishSequenceType
public: // features...
dishReferenceType!®®®* reference_range!3%?;

s

Patent Application Publication Nov. 1,2007 Sheet 10 of 45 US 2007/0256051 A1

FIG. 27

class dishSetType'?”® : public dishCompoundTypel®”? {
public: // features...

Text -compound_text!*% () ;
); '

FIG. 28

class dishvalueSetType!®®® . public dishSetTypel?’® {
public: // features...

dishValueType“ﬁa* value_range’3°¢;
}i '

FIG. 29

class dishReferenceSetType1082 : public dishSetType!?’® {
public: // features...

dishReferenceTypel®8* reférence_range!®%3;
}:

Patent Application Publication Nov. 1,2007 Sheet 11 of 45 US 2007/0256051 A1

FIG. 30

class dishMapType'®® : public dishCompoundType!®”® {
public: // features...

dishTypel®4* domain!3?,

Text compound_text!3?(); ‘
)

FIG. 31

class dishIndexMapType'®®® : public dishMapTypel®® {
public: // features...
dishvalueType'®®®* value_domain!?!4;
dishReferenceType!'?®®* reference_range!!$;
}i ’

FiG. 32

class dishScaleMapType'®®® : public dishMapType!%8 {
public: // features...
dishReferenceTypeloss* reference_dOmain1318;
‘dishvalueType!®®®+ value_range'???;

};

FIG. 33

1690 1084 {

class dishBindMapType

public: // features...
dishReferenceTypelosB* reference_domaint3??;

: dishReferenceTypelosa* reference_range!'3?4;

}:

: public dishMapType

FIG. 34

class dishConvertMapType!®®? : public dishMapType!'®8 [

public: // features...
dishvalueType'®®®* value_domain!®?¢;
dishvalueTypel038x value_range!3?8,;

}:

FIG. 35

class dinieLoggeJ:mg'1 {};

Patent Application Publication Nov. 1,2007 Sheet 12 of 45 US 2007/0256051 A1

FIG. 36

nscant33? {

mscanFile
mscanDirectory
mscanTopDirectory

}
mscanRegularFile
mscanAudioFile
mscanVideoFile

1332 ¢
1334 '
1336 ¢

1338
1340
1342 ()

FIG. 37

mscan'33? [

host mscanHost!3%%;
viewer mscanViewer
factory mscanFactory!3®8;
factory-root mscanFile'*?;
1 {
Set<mscanFilel!332s _root_files
mscanFilel!?3? {
mscanDirectory
Text _name!3%¢;
Text pathlue() [virtual; const] ;
mscanDirectory'33? {
[tag ‘folder’]
Set<mscanFile!?3?> files!®? [(meron];
Bit accept!*®® (mscanFile!®?*?);
mscanTopDirectory!33® {
Text pathusz() [virtual;. const] ;

}

1356,
’

1354 [meron] ;

1334 _parent13“ ;

}

mscanRegularFile!33® ¢
mscanAudioFile!®*? [tag '‘mp3’, ‘wav’, ‘ogg’]l (}
mscanvideoFile!?*? [tag '‘mpg’, 'mpeg’, ‘mov’, ‘avi’, ‘mp4’] {}

Patent Application Publication Nov. 1,2007 Sheet 13 of 45 US 2007/0256051 A1

FIG. 38

class mscanFilel33? {

private: .
~// members...
mscanDirectory
Text _name'34;

public:

// view access to members...
const mscanDirectory'**** parent() const {return _parent
Text name() const {return _name!3!¢;)

133x parentl3d,

1344
H

public: '

// edit access to members...

mscanDirectory'??** parent () {return _parent!?¥;)
public:

// reset access to members...

void set_parent(mscanDirectoryl”4* s);

void set_name (Text s) {_name'**® = 8;)
public:)

// member acceptors...

bool parent_accept (mscanDirectory {set_parent(r); return 1;}

bool name_accept (Text v) {set_name(v); return 1;}
public:

// additional methods...

virtual Text path®*®() const;
public:

// dispatch to viewer...

virtual bool dispatch_view(mscanViewer!?*®s) const;
private:

virtual const char *me() const {return "mscanFile";}
public:

// factory...

mscanFile();

virtual “mscanFile() {}
}i

13345 1y

FIG. 39

bool
mscanFile'33?: :dispatch_view(mscanViewer

{

return v.view(this);

} '

1356 &v) const

Patent Application Publication Nov. 1,2007 Sheet 14 of 45 US 2007/0256051 A1

FIG. 40

1332

typedef dimePointerSet<mscanFile > mscanFileSet;

class mscanHost!3%? {

private:
// members. ..
mscanFileSet _root_files!3%%;
mscanFactory'®*® _factory;
mutable dimeLogger *_logger;
public:

// view access to members... :

const mscanFileSet& root_files() const {return _root_files!3¢;)

const mscanFactory'?*®s factory() const {return _factory;)

dimeLogger *logger() const {return _logger;}
public: '

// edit access. to members...

mscanFileSet& root_files() {return _root_files

mscanFactory& factory() {return _factory;}
public:

// reset access to members...

void set_logger (dimeLogger *1) {_logger = 1;}
public: :

// member acceptors...

bool root_files_accept (mscanFile
public:

// viewers for compound members. ..

mscanFileSet: :Viewer root_files_viewer() const;
public: ’

// editors for compound members...

mscanFileSet::Editor root_files_editor() ;
public:

// factory...

mscanHost (dimeLogger *1=0);

virtual “mscanHost({();
private:

// prohibited...

mscanHost (const mscanHost&) ;

mscanHost& operator=(const mscanHost&);
}; i

1354
i}

1332 ¥r) {_root_files.insert(r); return 1;)

Patent Application Publication Nov. 1,2007 Sheet 15 of 45 US 2007/0256051 A1

FIG. 41

class mscanViewer!??® [
public:
// factory...
mscanViewer () {} .
. virtual ‘“mscanViewer () {}
private:."

// prohibited...

- mscanViewer (const mscanViewer!'*?%x);
mscanViewer& operator=(const mscanViewer!®®%g);

public:

" virtual bool view{const mscanFile

- virtual bool view(const mscanDirectory ;

- virtual ‘bool view{const mscanTopDirectory!33¢*);
virtual bool view(const mscanRegularFile!?3%x);
virtual bool view(const mscanAudioFile!?40¥) .
virtual bool view(const mscanVideoFilel34?+y;

public:
bool view_agg(const mscanFileSet&) :
bool view_agg(mscanFileSet: :Viewer);

public: - :
bool view_base(const mscanFile
bool view_base(const mscanDirectory?34x);
bool view_base(const mscanTopDirectory!®3®x);
bool view_base(const mscanRegularFilel338+y.
bool view_base (const mscanAudioFilel340*).
bool view_base (const mscanVideoFile!342*);

13324 .
; ,
13304, .

13324 ,
r

Patent Application Publication Nov. 1,2007 Sheet 16 of 45 US 2007/0256051 A1

FIG. 42
bool
mscanViewer!®®®: .view (const mscanFilel?3?* e)
{ ‘ .
return view base(e);
}
bool
mscanViewer!®®®: .view. base {const mscanFilel332x e)
{
return 1;
}
bool
mscanViewer'?®%: :view_agg(const mscanFileSet &a)
{ .
return view_agg(mscanFileSet::Viewer(a));
) _
bool
mscanViewer'?®®: :view_agg (mscanFileSet::Viewer ii)
{ .
dime_foreach(const mscanFile!?32*, e, ii)
"1f (!e->dispatch_view(*this)) return 0;
return 1;
}
bool
mscanViewer'>®¢: :view(const mscanDirectory!3?* e)
{ o
if (!view_agg(e->files())) return 0;
return view_base(e);
}
.bool '
mscanViewer!®®®: :view_base{const mscanDirectory!®?¥+ e)
{
if (le->mscanFile!®*?::dispatch_view(*this)) return 0;
return 1;

!/

Patent Application Publication

FIG.

class mscanFactory

43

public:
// ilnstantiators...

virtual mscanFile!?3? *instantiate

public:

// factory...
mscanFactory

Nov. 1,2007 Sheet 17 of 45

1358 {

1366() ;

-virtual “mscanFactory() {}
privater

// ctors...
static
static
static
static
static
static

private:

};

// members...

typedef mscanFile

mscanFile
mscanFile
mscanFile
mscanFile
mscanFile
mscanFile

1332,
13324
1332,
13324
13324
13324

13324

1364(

US 2007/0256051 A1

dimeText) ;

mscanFile_ctor () ;
mscanDirectory ctor();
mscanTopDirectory_ctor();
mscanRegularFile_ctor () ;
mscanAudioFile_ctor () ;
mscanVideoFile_ctor () ;

(Ctor) () ;

typedef dimeIndex<dimeText, Ctor> CtorMap;
CtorMap _ctor _map;

Patent Application Publication Nov. 1,2007 Sheet 18 of 45 US 2007/0256051 A1

FIG. 44

class dimeFileWalker!?’* ¢

//
public:

bool visit!3"®(dimeText path) ;
}i '

1368 public dimeFileWalker {

class mscanBuilder
public:
mscanBuilder (mscanHost!3%? &) ;
virtual “mscanBuilder () ;
public: ’ :
mscanHost!3%? ghost () {return _host;}
const mscanHost!33? &host () const {return _host;}
// bool visit'®’®(dimeText path); // ...provided the base class
public: .
// responders for dimeFilewalker...
virtual bool root_dir_open'®’®(dimeText, const struct stat*);
virtual bool dir_open'*®(dimeText, dimeText, const struct stat*):
virtual bool-regular_filelns(dimeText, dimeText, const struct stat*);
virtual bool dir_close1m4(dimeText, dimeText, const struct stat*);
virtual bool rdot_dir_closetmo(dimeText, const struct stat*); '
private:
mscanHost!**? & host;
pcre *_ext_regexp;
typedef dimePointerSequence<mscanDirectory'*3*s Stack;
Stack _stack; '

Patent Application Publication Nov. 1,2007 Sheet 19 of 45 US 2007/0256051 A1

FIG. 45

bool

mscanBuilder'?®®: :root_dir_open!3’® (dimeText path,
const struct stat *)

{
mscanDirectory!® *d = new mscanTopDirectory*?;
d—>set_name(path)}
if (_stack) return fail (path, "non-empty stack at root!?!");
_host.accept (4d); : :
_stack.push(d) ;
return 1;

bool
mscanBuilder™®®: :dir_open!*®?(dimeText dirpath, dimeText name,
const struct stat *)
{ .)
mscanDirectory’®** *d = new mscanDirectory!33?;
d->set_name (name) ;
if (!_stack)
return fail(dirpath, name, "empty stack on non-root directory!?!");
—Stack.top()->accept(d);
_stack.push(d);
return 1;

bool .
mscanBuilder'*®®: :regular_file'*® (dimeText dirpath, dimeText name,
const struct stat *)

{
dimeText ext;
// ...PCRE processing to get ext from name omitted
// ...cf. man 3 pcreapi, http://www.prce.org/

// try to get an mscanFile from the factory...
mscanFile'**? *f = host().factory().instantiate (ext);
if (£) (
f->set_name (name) ;
if (_stack) —stack.top()->accept (f) ;
else return fail (dirpath, name, "empty stack on regular file!?!");
}

return 1;

Patent Application Publication Nov. 1,2007 Sheet 20 of 45 US 2007/0256051 A1

FIG. 46

class mscanPagel?®® {

public:
mscanPage (dimeText dir_path: dimeLogger *1=0); // ...root page
mscanPage (const mscanPageStack&, dimeText name, dimeText title,
dimeLogger *1=0)}; // ...top-level page
mscanPage (const mscanPageStack&, dimeText name, dimelLogger *1=0);
// ...all other pages
virtual “mscanPage() {}
public: -
void accumulate{const mscanPage1388 &) ;
void accumulate(const mscanVideoFilel34? x);
void accumulate(const mscanAudioFile!®¢? *);
public:
bool write{); -
private: -
bool fail (dimeText msg);
void init{const mscanPageStack&) ;
void init{);
public:
dimeText _dir_path, _name, _title;
size_t _video_count, _closure_video_count;
size_t _audio_count, _closure_audio_count;
dimeTextSequence _parent_links, _child_links;
dimeTextSequence _video_links, _audio_links;

Patent Application Publication Nov. 1,2007 Sheet 21 of 45 US 2007/0256051 A1

FIG. 47

1370 1356 {

class mséanHtmlWriter public mscanViewer
public: '
mscanHtmlWriter (const mscanHost
virtual “mscanHtmlWriter();
public:
virtual bool view(const mscanTopDirectory33® =);
virtual bool view{const mscanDirectory®** x);
virtual bool view(const mscanVideoFile!34? *);
virtual bool view(const mscanAudioFile!??? *);
public:)
bool failed() const {return _failed;}
bool fail (dimeText msg); .
bool fail (const mscanFile *, dimeText msg);
private: '
bool require_dir (dimeText):
typedef dlmeConstP01nterSequence<mscanF1le> FlleSequence
void sort_files (const mscanDirectory *, FileSequence&) ;
bool view_agg{const FileSequence&) ;
bool dir_page(const mséanDirectory1”4-*, mscanPage
private:
const mscanHost3*?g _host;
dimeText _target; '
size_t _top_count;
mscanPage!?®®* _index_page;
typedef dlmePo1nterSequence<mscanPagel”8> Stack;
Stack _stack;
bool _failed;

1352 ¢, dimeText target);

1388 &) ;

Patent Application Publication Nov. 1,2007 Sheet 22 of 45 US 2007/0256051 A1

FIG. 48

bool
mscanHtmlWriter'®’": :dir_page(const. mscanDirectory®® *d, mscanPage!’®® &dp)
{
bool ok = 1;
if (!_stack) return fail(d, "empty stack!?!");
if (!require_dir(dp.dir_path())) return fail(d, "couldn't create directory");
{ // visit constituents recursively...
_stack.push (&dp) ;
FileSequence s; sort_files(d, s);:
if (!view_agg(s)) ok = 0;
_stack.pop () ;
}
if (!dp.write()) return fail(d, "write failed");
_stack. top () ->accumulate (dp) ;
return ok;

}

bool
mscanHtmlWriterlNO::view(const mscan'I‘opDirectory1336 *d)
{
dimePrintf name("topdir-%02u", _top_count++);
mscanPage'*®® dp(_stack, name, d->name(), logger()):
if (!dir_page(d, dp)) return fail(d, "dir-page failed"):
return 1;

)

bool

mscanHtmlWriter?®”: :view(const mscanDirectory!3?! *d)
{ .

mscanPage?®®® dp(_stack, d->name(), logger()); ,

if (!'dir_page(d, dp)) return fail(d, "dir-page failed");
return 1; -

}

bool
mscanHtmlWriter?™: .view_agg(const FileSequence &s)
{
FileSequence: :Viewer ii(s):; .
dime_foreach(const mscanFilel33? *, £, ii) {
if (tf->dispatch_view(*this)) return 0;
}

return 1;

Patent Application Publication Nov. 1,2007 Sheet 23 of 45 US 2007/0256051 A1

FIG. 49

bool

mscanHtmlWriter!®*’?: .view(const mscanVideoFilel34? «f)

{ .
if (!_stack) return fail(f, "empty stack!?!"):
_stack.top () ->accumulate(f);
return 1;

}

bool .

mscanHtmlWriter!’’?: :view(const mscanAudioFilel340 +*f)

{ .
if (!_stack) return fail(f, "empty stack!?!");
_stack.top () ->accumulate(f);
return 1;

}

FIG. 50

int main®¥’?(int argc, char **argv) {
const char *me = "mscan-writer";
dimePrintf usage("usage: %s path [path...] target", me):
// ...argument verification omitted for brevity

dimeText target(argv[--argc]);:
int arg = 1;
bool failed = 0;
dimeStreamLogger logger (cerr);
mscanHost!**? host (&logger); -
mscanBuilder!?®® builder (host);
while (arg < arge) ¢
const char *path = argv(arg++];
dimeLoggerContext path_context (&logger, path);
if (!builder.visit'?’®(path)) failed = 1;
]
i1f ('failed) (
// write some html.. .
mscanHtmlWriter!3’® writer (host, target) ;
if (writer.failed()) (
logger.fail("writer failed");
failed = 1;

}
return !failed ? 0 : -1;

Patent Application Publication

FIG. 51

Nov. 1,2007 Sheet 24 of 45

1012,

1028 '
dishModule

US 2007/0256051 A1

L1390
forwards-writer

L1392
forwards

L1394
classes-writer

L1396
classes

L1398
viewer-writer

L1400
viewer

L1402
editor-writer

L1404
editor

L1406
acceptors-writer

L1408
acceptors

L1410
predicators-writer

L1412
predicators

L1414
factory-writer

L1416
factory

L1418
host-writer

L1420
host

L1422
reflector-writer

L1424
reflector

L1426
auditor-writer

L1428
auditor

code-generator

Patent Application Publication Nov. 1, 2007 Sheet 25 of 45

FIG. 52

// includes!?3?.

#include "dimeSet.h"
#include "dimeText.h"

1392
1332,

// forwards
class mscanFile
class mscanDirectory
class mscanTolerectory
class mscanRegularFile!338.
class mscanAudioFile!34?,;
class mscanVideoFile!?4?;

1334 .
1336

// module-services!?¥?. ..

class mscanHost?3%?;

class mscanV1ewer1356
class mscanFactory.1358
// typedefst®3i.

typedef d1mePo:.nterSet<mscanFile1332

US 2007/0256051 A1

> mscanFileSet;

Patent Application Publication Nov. 1,2007 Sheet 26 of 45 US 2007/0256051 A1

FIG. 53

1396
1332 {

// class definition from class-definitions
class mscanDirectory!?? : public mscanFile
private:
// member-datum-definitions!®3®, ..
mscanFileSet _files!???,;
public:
// view-member-access
const mscanFileSet& files() const {return flles
public:
// edit-member-access
mscanFileSet& files() {return _files
public:
// uniform-member-acceptors
bool files_accept(mscanFile *r) {_fileslwo.insert(r); return 1;}
public:
// ‘compound-member-viewers
mscanFileSet::Viewer files_viewer() const ({
return mséanFileSet::Viewer(_files);
}
public:
// compound-member-editors
mscanFileSet::Editor files_editor() {
return mséanFileSet::Editor(_files);

1440
1350 2}

1402
1350, }

1446

1448

1450

}
public:

// specified-member- functlons

dimeBit accept (mscanFile*);
public:

// viewer-dispatch??®?,

virtual bool dlspatch v1ew(mscanV1ewer&) const;
public: :

// reflector-interface

static dimeText static_class_id{);

virtual dimeText class_id() const {return static_class_id{();}
public:

// factory '

mscanDirectory() {}

virtual “mscanDirectory();
}i

1452

1456

1458

Patent Application Publication Nov. 1,2007 Sheet 27 of 45 US 2007/0256051 A1

FIG. 54

// viewer'4%0

class mscanViewer
public:.
// factory...
mscanViewer () {}
virtual “mscanvViewer () {)
public:
// view-members'¢®® declarations. ..
virtual bool,view(const mscanFilean*);
virtual bool view(const mscanDirectory!?¥*).;
virtual bool view(const mscanTopDirectory336+) .
virtual bool view(const mscanRegularFilel!338%) .
" virtual bool view(const mscanAudioFile!340x) .
virtual bool view(const mscanVideoFilel342+);
public: '
// view-agg-members!?®® declarations. ..
bool view_agg(const mscanFileSet&);
bool'view_agg(mscanFileSet::Viewer);
public: _
// view-base-members!?®? declarations. ..
bool view_base(const mscanFilel332«).
bool view_base(const mscanDirectory!3*¢+);
bool view_base(const mscanTopDirectory!336+),
bool view_base(const mscanRegularFilel?38+);
bool view_base(const mscanAudioFilel?4Cx),
bool view_base(const mscanVideoFile!3%?*) .

1356
{

Patent Application Publication Nov. 1,2007 Sheet 28 of 45 US 2007/0256051 A1

FIG. 55

// view-members!'?®® definitions...

bool
mscanViewer!®®®: ;view({const mscanFilel33?* e)
{

return view base(e);
}
bool

. 1356 . . 1334,

mscanViewer ::view(const mscanDirectory e)
{

if (!view_agg(e->files())) return 0;
return view_base(e);

)

// view-base-members'*®’ definitions. ..

bool .
) : 1356, ..,z s 1332,

mscanvViewer : :view_base(const mscanFile e)

{
return 1;

}

bool

mscanViewer!?%%: :view_base(const mscanDirectory!**** e)

{ - ‘ : -
if (le->mscanFile!®3?:.dispatch_view(*this)) return 0;
return 1;

}

// view-agg-members!®® definitionms...

bool

mscanViewernSS::view_agg(const mscanFileSet &a)

{

return view_agg(mscanFileSet::Viewer (a)) ;

bool
mscanViewer!3%®. .view_agg(mscanFileSet: :Viewer ii)
{

dime_foreach (const mscanFile!?¥?x, e, ii)

if (!e->dispatch_view(*this)) return 0;
return 1;

Patent Application Publication Nov. 1,2007 Sheet 29 of 45 US 2007/0256051 A1

FIG. 56
dr4s'?’? [acceptor-id drdsAcceptor!?’®] {

drdsElement!?’®
drdsItem!?’® [tag item] {} -
dr4sChannel!®®® [tag channel] {
Sequence<drdsItem!®’®> _items!?®? [meron; tag ’'item’];

}

FIG. 57

// base-acceptor'*®® definition...
class drtlsAccept:or1474 {

public:
virtual bool accept (dr4sElement'?’® *);

virtual bool accept (dr4sItem!®’® *);
virtual bool accept (drdsChannell®®?),

};

Patent Application Publication Nov. 1,2007 Sheet 30 of 45 US 2007/0256051 A1

FIG. 58
// base-acceptor!*® methods. ..
- bool
drdsAcceptor’®’?: :accept (drdsElement?’® *e)
{ . A
return 0;
}
bool
drdsAcceptor™’: :accept (drdsItem!?’® +e)

{
if (accept((drdsElement!®’®*) - e)) return 1;

return 0;

}

bocl
drdsAcceptor®’®: :accept (drdsChannelt*80 xg)

{
if (accept({drdsElement!¥’®*) e)) return 1;

return 0;

FIG. 59

// specialized-acceptors'?®® definition...

¢lass dr4sChannel_itemsAcceptor®® : public dr4saAcceptor'®’ {
public:

drd4sChannel_itemsAcceptor (drdsChannel**® *t) . _target(t) {)
public:

bool accept (drdsItem'?’®*) {return _target->items_accept(c);}
private:

11480*

- drd4sChanne _target;

};

Patent Application Publication Nov. 1,2007 Sheet 31 of 45 US 2007/0256051 A1

FIG. 60

// acceptor-hosts!®’® definition...
class dr4sChannelAcceptorHost1486
public: . ‘
drdsChannelAcceptorHost () ;
dr4sAcceptor!i’i* acceptor’“®® (dr4sChanne]480+ target, dimeText tag);
drdsElement’®’®* instantiate'®®® (dimeText tag) ;
private: ’ '
// acceptor instantiators (Ator)....
static drdsAcceptor'*’** drdsChannel_itemsAcceptor_ator (drdsChannel 1480 £y |
return new dr4sChanne1_itemsAcceptorlwA(t);
) .
// context-instantiators (Itor)....
static drdsElement!476* drdsChannel_itemsAcceptor_itor() {
return new drdsItem*!’?; ’
}
private:
typedef ‘drdsAcceptori?’ix (Ator)(dr4sChann911“°*);
typedef dimeIndex<dimeText, Ator> AtorMap;
AtorMap _ator_map;]
typedef dr4sElement!®’®* (Itor)();
typedef dimeIndex<dimeText, Itor> ItorMap;
ItorMap _itor_map;
}; :

FIG. 61

// acceptor-liosts™’® definition...
dré4sChannelAcceptorHost!®: : drdsChannelAcceptorHost ()
—ator _ map["item"] = &drdsChannel_itemsAcceptor_ator;
_itor map["item"] = &dr4sChannel_itemsAcceptor_itor;

}
drdsAcceptort?’4x
dr4sChannelAcceptorHost'®: :acceptor!®®® (dr4asChannell*®®* target, dimeText tag) {
Ator *ator = _ator_map(tag);
return ator ? (*ator) (target) : 0;

dré4sElement!476+
1486,

drdsChannelAcceptorHost'**®: :instantiate?®® (dimeText tag) {
Itor *itor = _itor_map(tag);
return itor ? (*itor) () : 0:

P

Patent Application Publication Nov. 1,2007 Sheet 32 of 45 US 2007/0256051 A1

FIG. 62

class drdsElement {

public: // markup responders...
//
virtual bool accept_element (dimeText, drisElement*, drédsHost&);
/7 . .

public: :
// dispatch to acceptor...)
virtual bool dispatch_acceptor (drdsAcceptor&);
virtual drédsAcceptor* request_acceptor(drdsFactory&, dimeText);
//

X

class dr4sChannel : public dr4sElement {

private:
// members...
drdsItemSequence _items;
//

public:
// member acceptors...
bool items_accept (drdsItem *r) {_items.push_back(r); return 1;}

public: .
// dispatch to acceptor... .
virtual bool dispatch_acceptor (drdsAcceptor &a) {return a.éccept(this);}
virtual drésAcceptor* request_acceptor (drdsFactory'®? &f, dimeText tag) {

return f.request_acceptor (this, tag):
}
virtual drd4sElement* request_instantiation(dr4sFactory1542 &f, dimeText tag) {
return f.request_instantiation(this, tag):;

}
//

Patent Application Publication Nov. 1,2007 Sheet 33 of 45 US 2007/0256051 A1

FiIG. 63
bool .
drdsElement: :accept_element (dimeText t, dr4sElement *e, dr4sHost &h)
{ - . . .
dr4sAcceptor!?’4 *avﬁ'request_acceptor(h.factory(), t);
if (a) { o -
if (!e->dispatch acceptor(*a)) (
h.logger()->warn("$s: %s: declined", class_id().s(), t.s());
delete e; :
} ' '
delete a;
} .
=" else { .
h.logger () ->warn("%$s: %s: no acceptor", class_id().s(), t.s());
delete e;

}

return 1;
"}

Patent Application Publication Nov. 1,2007 Sheet 34 of 45 US 2007/0256051 A1

- FIG. 64

// predicator definitions!4l?. .

// predicator base class definitions!'4??...
class dishPredicator!®®® {
public:
// generic predicator apply operations
virtual bool apply(dishModule!®?® *, dishHost!0® &) const;
virtual bool apply(dishClass!®® *, dishHost'?'® &) const;
virtual bool apply(dishMemberDatum'®®? *, dishHost &) const;
//)
private: ‘
dimeText _tag;
};

1494

class dishPredicatorQualifier'!® : public dishPredicator!®®® (};

class dishPredicatorSingleton'®!? : public dishPredicator!s®® [
Y A :

private:
dimeText _complement;

}:

class ‘dishPredicatorPlurality’® : public dishPredicator!5®® {
// '

private:
dimeTextSequence _complements;

};

Patent Application Publication Nov. 1,2007 Sheet 35 of 45 US 2007/0256051 A1

FIG. 65

1412

// predicator definitions
1496

// predicator specializations
// example.of value predicator specialization!®'®. ..
class dish_accepts_markup_elementQualifier!®
public dishPredicatorQualifier!®!? {
public:
// example of specific predicator apply operations'?%. ..
// example of value specific predicator apply operation!®??. ..
bool apply(dishClass'®® *e, dishHost &) const {
return e->accepts_markup_element_accept (1) ;

}
}:

// example of instantiating predicator specialization?®?¢. ..
class dish_hostSingleton’®?? : public dishPredicatorSingleton!®'? {
public:
// example of specific predicator apply operatlons1498
// example of instantiating specific predicator apply operation!®?®. ..
bool apply(dishModule!®?® *e, dishHost%!® &) const {
dishHostClass!®? *m = new dlshHostCIass1040
m~->id_accept (_complement) ;
return e->host_accept (m);
}
}i

FIG. 66

// predicator definitions!!?. ..

// promissary reference base class definitiont®?. ..
class dishPredicatorPromissaryReference®®?® [
public:
dishPredicatorPromissaryReference (dimeText t,
_tag(t), _id(id), _source(s) {}
// ' .
// promissary resclve operation .
bool resolve(dishHost!?® gc, dimeLogger *) const {
dishEntity!0%% *eo = c.resolver() .resolve(_id);
if (!e) return 0;
return e->dispatch_resolution(*this, c};

dimeText id, dimeText s)

1530

} .
// generic promissary acceptor operations!®®?, ..

//
virtual bool accept (dishMemberDatum *, dishHost &) const;

private:
dimeText _tag, _id, _source;
}; o

Patent Application Publication Nov. 1,2007 Sheet 36 of 45 US 2007/0256051 A1

FIG. 67

// predicator definitions!®?, .

class dishMemberDatum'®*? . public dishMember {
private:

dishMemberFunction!®®* acceptor
public:

bool acceptor_accept (dishMemberFunction'®®* r) {acceptor'?®=r; return 1;}
Y ’

1260,
?’

class dishMemberFunction!®® : public dishMember {
public:
// promissary dispatch'®®?...
virtual bool dispatch_resolution/(
const dishPredicatorPromissaryReference &pr, dishHost &c)
{
return pr.accept(this, c¢);
}
//
}i
// example of promissary reference definition®®, ..
class dishMemberDatum_acceptorPromissaryReference!®3*
public dishPredicatorPromissaryReference!’?®
{
public:
dishMemberDatum_acceptorPromissaryReference (dishMemberDatum* t,
dimeText tag, dimeText id, dimeText source)
dishPredicatorPromissaryReference(tag, id, source), _target(t) {}
// example of specific promissary acceptor operations!®®¢. ..
bool accept (dishMemberFunction!®?® *m, dishHost&) const {
_target->acceptor_accept (m) ;
}
private: i
dishMemberDatum* _target;
};
// example of predicator specializationg??¢...
// example of promissary predicator specialization
class dish_acceptorSingleton : public dishPredicatorSingleton {
public:
// example of specific predicator apply operations?®®...
// example of promissary specific predicator apply operationt®. ..
bool apply(dishMemberDatum *e, dishHost &c) const {
c.depository() << new dishMemberDatum_acceptorPromissaryReference
e, tag(), complement (), source());

1538

1534
(

}

return 1;

Patent Application Publication Nov. 1,2007 Sheet 37 of 45 US 2007/0256051 A1

FIG. 68

/7 factory'®,

class dré4sFactory!®*? {
public:
drdsFactory() ;
" public:
// instantiators .
virtual dr4sElement!?’$ *instantiate (dimeText) ;
virtual drd4sElement!?’¢ *instantiate (drdsElement*, dimeText);
public:
// acceptor-responders
drdsAcceptor'*’** request_acceptor (drdsElement!!’*, dimeText)
dr4sAcceptor'’** request_acceptor (drdsItem!®’8*, dimeText) :
drdsAcceptor™’* request_acceptor (dr4sChannell*®*, dimeText);
/1 ' -
public:
// context-instantiator-responders!>®. ..
drdsElement™’®* request_instantiation (drdsElement'4’6*, dimeText);
drdsElement*®’®* request_instantiation(drdsItem'*’8*, dimeText tag) {
return _drédsItemAcceptorHost.instantiate(tag);

1544

1546

} : .
dr4sElement*’®* request_instantiation (dr4sChannel®*, dimeText tag) (
return —drdsChannelAcceptorHost.instantiate(tag);
} .
//
private:
// acceptor-host-members
drdsElementAcceptorHost _drdsElementAcceptorHost;
drdsItemAcceptorHost _drd4sItemAcceptorHost;
dr4sChannelAcceptorHost 1486 _dr4sChannelAcceptorHost;
/ / .)
private: ‘
// static-instantiators
static dr4sElement!?’®* dr4sElement_ctor () ;
static drdsElement'®’®* drdsItem_ctor() {return new drdsItem!®’8:)
static drdsElement'#’®* dr4sChannel_ctor() {return new drdsChannell?®;)
1/
private:
// instantiator-map-member .
typedef dr4sElement!476+ (Ctor) ();
typedef dimeIndex<dimeText, Ctor> CtorMap;
CtorMap _ctor_map;

1550

1552 -

1554

Patent Application Publication Nov. 1,2007 Sheet 38 of 45 US 2007/0256051 A1

FIG. 69

dr4sFactory'®?: :drdsFactory() "

{

// instantiator-map-initializers®®®®...
_ctor_map["item"]) = &drdsItem_ctor;.
_ctor_map["channel"] = &dr4sChannel_ctor;

}

// instantiators!®*¢ definitions...
dr4sElement 476+, '
dr4sFactory'®?: :instantiate (dimeText t)
(

Ctor *ctor = _ctor_map(t);

return ctor ? (*ctor) () : 0;

}

dr4sElement 476+
1542 .

drd4sFactory ::instantiate(drdsElement!*’® *e, dimeText t)
{

return e->request_instantiation(*this, t);

)

Patent Application Publication Nov. 1,2007 Sheet 39 of 45 US 2007/0256051 A1

FIG. 70

// resolver!®®

class dishResolver'®®? : public dishEditor!®®* {
public:

// build the index...

bool edit (dishEntity!??% *e) {

if (!e->id()) return 0;
if (!_index.insert{e->id(), e)) return O0;
return 1;
}
public:

// operate the index...

dishEntity’%2%* resolve (dimeText t) {return _index(t);}

const dishEntitylms* resolve(dimeText t) const {return _index(t);}
private:

typedef dimeIndex<dimeText, dishEntity!9%6> Index,

Index _index;

};
// depository*®®°.
class dlshPredlcatorDepos1tory”66{
public:
// accept promissary reference...
typedef dishPredicatorPromissaryReference Reference;
void operator<<{Reference *r) T_references << r;}
public:
// redeem promissary references. .
bool redeem(dishHost1018 &context, dlmeLogger *logger) {
bool ok = 1;
while (_references) {

Reference *r = _references.pop();
if (!r->resolve(context, logger)) ok = 0;
delete r;

}
return ok;
}
private:
. // member. ..
dimePointerSequence<Reference> _references;

}:

Patent Application Publication Nov. 1,2007 Sheet 40 of 45 US 2007/0256051 A1

FIG. 71

// host!¥0_ .

class dishHost%8 |

private:
// client-member-datal®®®. ..
dishModuleSequence _modules
dishModule_dimeTextMap _module_index
dishTypeSequence _types!???,

public:
// client-member-functions
// additional methods... :
dishModule* module(dimeText t);
dimeBit accept_module(dishModule* m);
dimeBit accept_type(dishType*);

1020,
;

1098 ,
’

1570

private:
// module-member-datal’®’?. ..
dishResolver!®®? _resolver;

dishPredicatorDepository!®®®

dishFactory _factory;
dishReflector!®® _reflector;
mutable dimeLogger *_logger;
public:
// member-access ‘
const dishModuleSequence& modules() const {return _modules;}
const dishModule_dimeTextMap& module_index() const {return _module_index;}
const dishTypeSequence& types().const {return _types;}
const dishResolver& resolver() const {return _resolver;}
//
public: |
// factory
dishHost (dimeLogger *1=0);
virtual ~dishHost();
Y

_depository;

1574

1576

Patent Application Publication Nov. 1,2007 Sheet 41 of 45 US 2007/0256051 A1

FIG. 72

// reflector?!, ..

class dishReflector
public:

// factory-services

dishReflector();

virtual ~dishReflector{);
public:

// id-services ‘

dimeText canonical_class_id(dimeText) const;

bool validate(dimeText) const;
public:

// set-services

const dimeTextSet &empty_set() const {return _empty_set;};

const dimeTextSet &species_set(dimeText) const;

const dimeTextSet &genera_set (dimeText) const;

const dimeTextSet &species_closure_set (dimeText) const;

const dimeTextSet &genera_closure_set (dimeText) const;

const dimeTextSet &universal_set() const ({return _universal_set;};
public:

// sequence-services

const dimeTextSegquence &empty_sequence() const {return _empty_sequence;};

const dimeTextSequence &species_sequence{dimeText) const;

const dimeTextSequence &genera_sequence (dimeText) ceonst;

const dimeTextSequence &species_closure_sequence (dimeText) const;

const dimeTextSequence &genera_closure_sequence (dimeText) const;

const dimeTextSequence &universal_sequence() const {return _universal_sequence;};
private:

// member-datal®®®. ..

const dimeTextSet _empty_set;

const dimeTextSequence _empty_seguence;

typedef dimeMap<dimeText, dimeText> TextMap;

TextMap _canonical_class_id;

typedef dimeIndex<dimeText, dimeTextSet> SetIndex;

SetIndex _species_set, _genera_set;

SetIndex _species_closure_set, _genera_closure_set;

typedef dimeIndex<dimeText, dimeTextSequence> Sequencelndex;

SequencelIndex _species_sequence, _genera_sequence;

Sequencelndex _species_closure_sequence, _genera_closure_sequence;

dimeTextSet _universal_set; .

dimeTextSequence _universal_sequence;

1578 {

1580

1582

1584

1586

Patent Application Publication Nov. 1,2007 Sheet 42 of 45 US 2007/0256051 A1

FIG. 73

/! factory-services'®8? excerpts...

dishReflector?®’®..dishReflector() {
{ // genera...
{ // dishElement®?. ., .
dimeTextSet *gs = new dimeTextSet;
_genera_set [dishElement!%?%: :static_class_id()] = gs;
"dimeTextSet *gsc = new dimeTextSet;

_genera_closure_set [dishElement'?%%: :static_class_id()] = gsc;
dimeTextSequence *g = new dimeTextSequence;
_genera_sequence[dishElementhq::static;class_id()] = g;
dimeTextSequence *gc = new dimeTextSequence;
—genera_closure_sequence[dishElement!®?*: :static_class_id()] = gc;

(*gsc) += (*gs);

{ // dishEntity!®?6, .
dimeTextSet *gs = new dimeTextSet;
_genera_set [dishEntity!%%f: .static_class_id()] = gs;
dimeTextSet *gsc = new dimeTextSet;
_genera_closure_set [dishEntity!??®::static_class_id()] = gsc;
dimeTextSequence *g = new dimeTextSequence;
_genera_sequence [dishEntity?%%: :static_class_id()] = g;
dimeTextSequence *gc = new dimeTextSequence;
.—genera_closure_sequence[dishEntity'%?¢: :static_class_id()] = gc;
gs->put (dishElement!®?!: :static_class_id());
(*gsc) += genera_closure_set (dishElement?%?¢: :static_class_id());

(*g) << dishElementlmd::Static_class_id();

(*gc) << dishElement!®??::static_class_id();
(*gc) << genera_closure_sequernce (dishElement'%?*: :static_class_id());

(*gsc) += (*gs);

Patent Application Publication Nov. 1,2007 Sheet 43 of 45 US 2007/0256051 A1

FIG. 74

// factory-services'®® excerpts... -

dishReflectori®’®: :dishReflector() {
{ // species...

//

{ // dishEntity!9%®, .
dimeTextSet *ss = new dimeTextSet;
_species_set [dishEntity’%?®::static_class_id()] = ss;
dimeTextSet *ssc = new dimeTextSet;
_species_closure_set [dishEntity'"%: :static_class_id()] = ssc;
dimeTextSequence *s = new dimeTextSequence:
_species_sequence[dishEntity'?%: :static_class_id()] = s;
dimeTextSequence *sc = new dimeTextSequence;

- _species_closure_sequence[dishEntity'®?®: :static_class_id()] = sc;
ss—>put(dishModule1”8::static_class_id());
(*ssc) += species_closure_set (dishModule!%?®: :static_class_id());
(*s) << dishModulel®?®:.static_class_id(); ’
(*sc) << dishModule'®?®::static_class_id();
(*sc) << species_closure_sequence (dishModule!®?®; . static_class_id());

ss->put (dishClass'®®: :static_class_id());

(*ssc) += species_closure_set (dishClass®®::static_class_id());
(*s) << dishClass'®S::static_class_id();

(*sc) << dishClass'®®::static_class_id(};

(*sc) << species_closure_sequence (dishClass!®¢: :static_class_id());

t/

{ // dishElement!®?*._ ..
dimeTextSet *ss.= new dimeTextSet;
_species_set [dishElement!%?: :static_class_id{)] = ss;

dimeTextSet *ssc = new dimeTextSet;

_species_closure_set [dishElement!%?’::static_class_id()] = ssc;
dimeTextSequence *s = new dimeTextSequence;

_species_sequence [dishElement!%%%: .static_class_id()] = s;
dimeTextSequence *sc = new dimeTextSequence;

_species_closure_sequence[dishElement!%®: :static_class_id()] = sc;

ss->put (dishEntity'®%®::static_class_id());

{(*ssc) += species_closure_set (dishEntity!%?%: :static_class_id{());

{(*s) << dishEntity*®?®::static_class_id();

(*sc) << dishEntity'%?®::static_class_id();
(*sc) << species_closure_sequence(dishEntitylms::static_class_id());

1/

Patent Application Publication Nov. 1,2007 Sheet 44 of 45 US 2007/0256051 A1

FIG. 75
// auditor®?®. . ..
class dishAuditor!®®® . public dishviewer!®?? {
public:
dishAuditor (dimeLogger *1) : _logger{l) {}
virtual ~dishAuditor() {(}
public:

// logging-context!®?®. .
dimeText context (const dishElement *e);
public:
// views
virtual bool view(const dishEntity *e) {
{
dimeLoggerContext lc(_logger, context(e));
if (!'e->audit(_logger)) return 0;
}
return dishViewer*®??::view(e);
}
virtual bool view(const dishClass *);
virtual bool view(const dishMember *);
private: ,
mutable dimeLogger *_logger;
};

1596

1026 1024 {

- class dishEntity : public dishElement
private:
// members...
dimeText _id;
A/
public:
// audits®®®®, .
boel audit (dimeLogger *logger) const {
if (1_id) |
logger->fail{"’_id’' failed");
return 0;
}
return 1;
}
//

Patent Application Publication Nov. 1,2007 Sheet 45 of 45 US 2007/0256051 A1

FIG. 76
1014,
L1600
. - catalog
catalog-writer :
- L1608
1028 L 1602

|

: -~ . - description
- description-writer
dishModule _ ‘ 1610
. L1604

- . fi
figures-writer ‘ 'qures

_ L1606
vocabulary-writer

document-generator

:

1612

vocabulary

|

1614

US 2007/0256051 Al

PRODUCING UNITARY CLASS
DEFINITIONS FROM MODULE
SPECIFICATIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS:

[0001] This application claims the benefit of PPA Ser. No.
60/791,128, Module Generation for Object-Oriented Pro-
gramming, Atty. Docket #2006-003, filed Apr. 11, 2006 by
the present inventor, the disclosure of which is incorporated
herein by reference.

BACKGROUND OF THE INVENTION

[0002] This invention relates particularly to the production
of module definitions from module specifications, and gen-
erally to software development tools generating object-
oriented programming language code.

[0003] Object-oriented programming enjoys great popu-
larity among programmers. However, in the development of
a complex system, the programmer must attend to a vast
collection of details. These details may easily obscure and
complicate large-scale considerations of the interactions
within and between program elements. Hence it would be
beneficial to have the use of tools which reduce complexity
by automatically handling various details, which may then
be suppressed in favor of concise expressions of large-scale
interactions.

[0004] Object-oriented programming tends to focus on
classes, since classes are the most important component in
object-oriented programming languages. In many applica-
tions, however, significant benefits may be gained by con-
sidering modules, which include collections of interrelated
classes. Modules typically incorporate classes which are
closely related to domain-specific categories. Relationships
of generalizations and specialization among domain catego-
ries may be reflected in derivation relationships between
categorical classes. It would be beneficial for modules to
also include non-categorical classes which are specialized
for hosting and processing data structures composed of
instances from the categorical classes. It would also be
beneficial to coordinate and systematize categorical and
unitary non-categorical classes to enhance developer pro-
ductivity, further relieving the developer from excessive
attention to tedious details.

[0005] The problems of specifying suitable representa-
tions have led to enormous efforts in the provision of
modeling languages, of which the most prominent may be
the Unified Modeling Language. (UML). UML is vast and
comprehensive, with a scope that encompasses all aspects of
object-oriented programming. The breadth of that scope
limits the use of idioms, patterns, and other paradigms that
are applicable in a narrower context of specific unitary and
categorical classes. It would be beneficial to have methods
of processing that were specifically directed to the narrower
but still critical problems of the specification, construction,
and processing of domain-specific object-oriented data
structures.

SUMMARY

[0006] A computer-implemented method of processing a
module specification to produce predicator definitions is
disclosed.

Nov. 1, 2007

[0007] A module is viewed. The module is included in the
module specification. A predicator base class definition is
provided. The predicator base class definition is included in
the predicator definitions. The predicator base class defini-
tion includes a plurality of generic predicator apply opera-
tions. A promissary reference base class definition is pro-
vided. The promissary reference base class definition is
included in the predicate definitions. The promissary refer-
ence base class definition includes a resolve operation. The
promissary reference base class definition includes a plural-
ity of generic promissary acceptor operations.

[0008] A plurality of categorical classes are dispatched.
The categorical classes are included in the module. A
categorical class is viewed. The categorical class is included
in the categorical classes. A generic predicator apply opera-
tion, corresponding to the categorical class, is accumulated
to the generic predicator apply operations. A generic prom-
issary acceptor operation, corresponding to the categorical
class, is accumulated to the generic promissary acceptor
operations. A promissary dispatch in a categorical class
definition, corresponding to the categorical class, is pro-
vided. The dispatch in turn dispatches to the generic prom-
issary acceptor operation.

[0009] A plurality of class members are dispatched. The
class members are included in the categorical class. A datum
is viewed. The datum is included in the class members, A
view to a datum type is dispatched. The datum type is
associated with the datum.

[0010] A value type is received. A value predicator spe-
cialization is provided, corresponding to the value type for
the datum. The value predicator specialization is derived
from the predicator base class definition. The value predi-
cator specialization includes a value specific predicator
apply operation, corresponding to the generic predicator
apply operation. The value predicator specialization is accu-
mulated to a plurality of predicator specializations. The
predicator specializations are included in the predicator
definitions.

[0011] A reference type is received. A meron qualification
is tested. The meron qualification is included in the datum.
According to the success of the test for the meron qualifi-
cation, an instantiating predicator specialization is provided,
corresponding to the reference type for the datum. The
instantiating predicator specialization is derived from the
predicator base class definition. The instantiating predicator
specialization includes an instantiating specific predicator
apply operation, corresponding to the generic predicator
apply operation. The instantiating predicator specialization
is accumulated to the predicator specializations.

[0012] According to the failure of the test for the meron
qualification, a promissary predicator specialization, is pro-
vided, corresponding to the reference type for the datum.
The promissary predicator specialization is derived from the
predicator base class definition. The promissary predicator
specialization includes a promissary specific predicator
apply operation, corresponding to the generic predicator
apply operation. The promissary predicator specialization is
accumulated to the predicator specializations. A promissary
reference definition is written. The promissary reference
definition is derived from the promissary reference base
class definition. The promissary reference definition
includes a specific promissary acceptor operation. The spe-
cific promissary acceptor operation corresponds to the
generic promissary acceptor operation. The promissary ref-

US 2007/0256051 Al

erence definition is accumulated to a plurality of promissary
reference definitions. The promissary reference definitions
are included in the predicator definitions.

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 depicts a generator which reads module
specifications and writes programming language code and
documention corresponding to the specifications.

[0014] FIG. 2 begins the depiction of a summary specifi-
cation of an exemplary object-oriented module suitable for
representation of specifications of object-oriented modules
1/2).

[0015] FIG. 3 concludes the depiction of a summary
specification of an exemplary object-oriented module suit-
able for representation of specifications of object-oriented
modules (2/2).

[0016] FIG. 4 depicts an informal definition of an exem-
plary class representing a unitary host element for represen-
tation of specifications of object-oriented modules.

[0017] FIG. 5 depicts an informal definition of an exem-
plary class representing element elements.

[0018] FIG. 6 depicts an informal definition of an exem-
plary class representing entity elements.

[0019] FIG. 7 depicts an informal definition of an exem-
plary class representing module elements.

[0020] FIG. 8 depicts an informal definition of an exem-
plary class representing class elements.

[0021] FIG. 9 depicts an informal definition of an exem-
plary class representing host-class elements.

[0022] FIG. 10 depicts an informal definition of an exem-
plary class representing operand elements.

[0023] FIG. 11 depicts an informal definition of an exem-
plary class representing argument elements.

[0024] FIG. 12 depicts an informal definition of an exem-
plary class representing member elements.

[0025] FIG. 13 depicts an informal definition of an exem-
plary class representing member-function elements.

[0026] FIG. 14 depicts an informal definition of an exem-
plary class representing member-datum elements.

[0027] FIG. 15 depicts an informal definition of an exem-
plary class representing type clements.

[0028] FIG. 16 depicts an informal definition of an exem-
plary class representing void-type elements.

[0029] FIG. 17 depicts an informal definition of an exem-
plary class representing value-type elements.

[0030] FIG. 18 depicts an informal definition of an exem-
plary class representing bit-type elements.

[0031] FIG. 19 depicts an informal definition of an exem-
plary class representing integer-type elements.

[0032] FIG. 20 depicts an informal definition of an exem-
plary class representing cardinal-type elements.

[0033] FIG. 21 depicts an informal definition of an exem-
plary class representing text-type elements.

[0034] FIG. 22 depicts an informal definition of an exem-
plary class representing reference-type elements.

[0035] FIG. 23 depicts an informal definition of an exem-
plary class representing compound-type elements.

[0036] FIG. 24 depicts an informal definition of an exem-
plary class representing sequence-type elements.

[0037] FIG. 25 depicts an informal definition of an exem-
plary class representing value-sequence-type elements.
[0038] FIG. 26 depicts an informal definition of an exem-
plary class representing reference-sequence-type clements.

Nov. 1, 2007

[0039] FIG. 27 depicts an informal definition of an exem-
plary class representing set-type elements.

[0040] FIG. 28 depicts an informal definition of an exem-
plary class representing value-set-type clements.

[0041] FIG. 29 depicts an informal definition of an exem-
plary class representing reference-set-type elements.
[0042] FIG. 30 depicts an informal definition of an exem-
plary class representing map-type elements.

[0043] FIG. 31 depicts an informal definition of an exem-
plary class representing index-map-type clements.

[0044] FIG. 32 depicts an informal definition of an exem-
plary class representing scale-map-type elements.

[0045] FIG. 33 depicts an informal definition of an exem-
plary class representing bind-map-type elements.

[0046] FIG. 34 depicts an informal definition of an exem-
plary class representing convert-map-type elements.

[0047] FIG. 35 depicts an informal definition of an exem-
plary class representing logger elements.

[0048] FIG. 36 depicts an overview of a module.

[0049] FIG. 37 depicts particulars of a module.

[0050] FIG. 38 depicts a generated class definition for a
class.

[0051] FIG. 39 depicts a generated view dispatch member

function for a class.

[0052] FIG. 40 depicts a generated host class definition for
a module.

[0053] FIG. 41 depicts a generated viewer class definition
for a module.

[0054] FIG. 42 depicts generated member function defi-
nitions for the viewer class for a module.

[0055] FIG. 43 depicts a generated factory class definition
for a module.

[0056] FIG. 44 depicts a builder class definition for an
application.

[0057] FIG. 45 depicts member function definitions for a
builder class for a application.

[0058] FIG. 46 depicts a page class definition for an
application.
[0059] FIG. 47 depicts an HTML writer class definition

for an application.

[0060] FIG. 48 depicts member function definitions for an
HTML writer class for an application.

[0061] FIG. 49 depicts additional member function defi-
nitions for an HTML writer class for an application.

[0062] FIG. 50 depicts a main program for an application.
[0063] FIG. 51 depicts a summary of the code generators.
[0064] FIG. 52 depicts excerpts from generated forward

class declarations for an exemplary module, generated by a
forwards-writer generator.

[0065] FIG. 53 depicts excerpts from generated class
definitions for an exemplary module, generated by a classes-
writer generator.

[0066] FIG. 54 depicts excerpts from a generated viewer
class for an exemplary module, generated by a viewer-writer
generator.

[0067] FIG. 55 depicts excerpts from member definitions
of a generated viewer class for an exemplary module,
generated by a viewer-writer generator.

[0068] FIG. 56 depicts excerpts from a module specifica-
tion for an exemplary module.

[0069] FIG. 57 depicts excerpts from a generated acceptor
class definition for an exemplary module, generated by an
acceptors-writer generator.

US 2007/0256051 Al

[0070] FIG. 58 depicts excerpts from generated member
function definitions for a generated acceptor class for an
exemplary module, generated by an acceptors-writer gen-
erator.

[0071] FIG. 59 depicts excerpts from a generated class
definition of an acceptor class specialization, generated by
an acceptors-writer generator.

[0072] FIG. 60 depicts excerpts from a generated class
definition of an acceptor host class specialization, generated
by an acceptors-writer generator.

[0073] FIG. 61 depicts excerpts from generated member
function definitions for a generateed acceptor host class
specialization, generated by an acceptors-writer generator.

[0074] FIG. 62 depicts excerpts from generated class
definitions for classes from an exemplary module, including
dispatch to an acceptor.

[0075] FIG. 63 depicts an accept-element member func-
tion suitable for markup processing.

[0076] FIG. 64 depicts excerpts from generated class
definitions for predicator classes for processing predicates,
generated by an predicators-writer generator.

[0077] FIG. 65 depicts excerpts from generated class
definitions for specializations of predicators.

[0078] FIG. 66 depicts excerpts from a generated prom-
issary reference class, for deferred resolution of textual
identiers.

[0079] FIG. 67 depicts excerpts from generated classes
illustrating dispatch to a promissary reference, acceptance of
a promissary reference, and construction of a promissary
reference in an predicator.

[0080] FIG. 68 depicts excerpts from a generated factory
class definition including acceptor-hosts, generated by a
factory-writer generator.

[0081] FIG. 69 depicts excerpts from generated member
functions from a factory class, generated by a factory-writer
generator.

[0082] FIG. 70 depicts excerpts from generated class
definitions for a resolver and a depository, generated by a
host-writer generator.

[0083] FIG. 71 depicts excerpts from generated class
definitions for a host, generated by a host-writer generator.
[0084] FIG. 72 depicts excerpts from a generated class
definition for a reflector, generated by a reflector-writer
generator.

[0085] FIG. 73 depicts excerpts from a generated initial-
ization for a reflector, generated by a reflector-writer gen-
erator.

[0086] FIG. 74 depicts additional excerpts from a gener-
ated initialization for a reflector, generated by a reflector-
writer generator.

[0087] FIG. 75 depicts excerpts from a generated class
definition for an auditor, generated by an auditor-writer
generator.

[0088] FIG. 76 depicts a summary of the document gen-
erators.

DETAILED DESCRIPTION

1 Terminology

[0089] The present invention concerns the generation of
module definitions from module specifications. For the
purposes of this invention, a module definition is a collection
of interrelated object-oriented class definitions and other
elements of an object-oriented computer program. A module

Nov. 1, 2007

specification is an object-oriented data structure typically
derived from a textual expression prepared by a human
programmer or a computer program. The module specifica-
tion represents the classes and other elements that will be
defined in the module definition.

[0090] Classes may be usefully divided into categorical
classes and unitary classes. A categorical class corresponds
to a category in a domain-specific model. Thus categorical
classes are largely determined by the requirements of the
domain to which applications of the specified module are
directed. Instances of a categorical class are typically
unbounded in number. Categorical classes are usually
arranged in a hierarchy or directed acyclic graph reflecting
the relations of genera and species among the domain-
specific categories.

[0091] Unitary classes relate to the module as a whole. A
host is one important unitary class. The host for a module
provides a unitary representation of what is typically a
multiplicity of objects. The objects are instances of the
categorical classes. The host provides access to individual
and collected instances according to an organizational
scheme which reflects the requirements of the domain.
Together with the categorical instances, the host provides a
domain-specific object-oriented data structure which is con-
venient as a target for construction and as a source for
processing.

[0092] The categorical classes of a module, corresponding
to the categories of a domain, are characterized by member
data. The form of the member data is specified in the class
but each instance has its own copy of member data elements.
Member data is characterized by its type. Type is a complex
property of data in many object-oriented programming lan-
guages. In the present invention, a simplified type system is
used, permitting concise specification and enforcing consis-
tency of usage. Types include value types, reference types,
and compound types.

[0093] Value types correspond to scalar data, in which the
value of the data accords with the meaning of the data.
Scalar data is typically represented by built-in types of a
programming language (e.g. int, double, char, in the C
language) or by simple classes (e.g. string, date) which may
be passed by value (copying elements or structures). Scalar
data is used to represent properties of instances, such as
identifiers and measured quantities.

[0094] Reference types correspond to references to
instances of categories. Reference data is typically repre-
sented by pointers or references in a programming language.
The value of a pointer is arbitrary and bears no relation to the
meaning of the object the pointer represents. Reference data
is typically passed by reference (i.e. by copying pointers, not
structures). Conceptually, reference data is used to imple-
ment assocations among categories in which a first instance
is associated with a second instance.

[0095] Compound types correspond to collections. Provi-
sion of collections varies widely in programming languages.
However, for effective application programming, set,
sequence, and map may be sufficient. A set is an unordered
collection of elements which does not contain duplicates. A
set provides efficient determination of the presence or
absence of an element. A set also provide efficient insertion
and deletion of an element. Efficient iteration of the con-
stituent elements of a set is another requirement. Efficient in
this context means logarithmic in the number of contained

US 2007/0256051 Al

elements for determination, insertion, and deletion. Sets may
contain reference or value data.

[0096] A sequence is an ordered collection which provides
efficient insertion and deletion of elements at either end of
the sequence, thus permitting stack, queue, and deque func-
tionality. A sequence may also provide efficient random
access to individual elements by offset in the collection
order. A sequence also provides efficient iteration of the
elements in order. Sequences may contain reference or value
data.

[0097] A map provides efficient association between
domain and range elements. Given a domain element, a map
efficiently produces a corresponding range element or indi-
cates the absence of such an element. Maps must efficiently
support insertion and deletion of domain, range pairs. Maps
support all combinations of range and domain value and
reference. An index denotes a map with a value domain and
a reference range. A scale denotes a map with a reference
domain and a value range. A binding denotes a map with
reference domain and range. A conversion denotes a map
with value domain and range.

[0098] Member data having singular or compound refer-
ence type may be characterized by a meron qualification.
Qualification as a meron indicates that the referenced ele-
ment should be considered a part of the referencing element.
The term is a contraction of the linguistic term “meronym”,
which is used to distinguish a part in a part/whole relation-
ship. Used in a module specification, meron qualification
determines memory management, where applicable, as well
as default behavior in the base viewer and the base editor. In
the default view of an instance, its merons will be viewed.
Non-meron references are ignored by default.

2 System Overview

[0099] Refer to FIG. 1. A generator 1000 processes mod-
ule specifications compatible with a grammar 1002 to pro-
duce generated-code 1004 and generated-documents 1006.
The specifications are processed by a parser 1008, which
constructs an object-oriented data structure encapsulated in
a host 1010. The host 1010 represents the specified modules
as an object-oriented data structure. The constituent module
specifications of the host 1010 are processed by a code-
generator 1012 to provide the generated-code 1004. The
generated code includes software components written in a
conventional object-oriented programming language. The
constituent module specifications of the host 1010 are also
processed by a document-generator 1014 to provide the
generated-documents 1006. The generated documentation
includes descriptions and figures which characterize the
specified modules.

[0100] The present invention relates to aspects of the
processing of the constituent module specifications of the
host 1010 by the code-generator 1012 and the document-
generator 1014 to produce the generated-code 1004 and the
generated-documents 1006. Co-pending applications relate
to the language of the grammar 1002 the parser 1008, and
other aspects of the code-generator 1012.

3 Meta-Module Description

[0101] Refer to FIG. 2. A discursive-model meta-module
1016 specifies classes for representation and processing of
modules for object-oriented programming. The meta-mod-
ule 1016 has a host class host 1018.

Nov. 1, 2007

[0102] The host 1018 represents an instantiation of the
module. A datum modules 1020 collects module specifica-
tions. A datum types 1022 collects types defined amongst
modules for memory management.

[0103] A categorical class element 1024 defines a common
base for parsed elements.

[0104] A categorical class entity 1026 represents named
elements. The entity 1026 has genus element 1024.

[0105] A categorical class module 1028 represents a col-
lection of interrelated classes for object-oriented program-
ming. The module 1028 has genus entity 1026. A datum
classes 1030 represents the collection of classes within a
module. A datum forward-classes 1032 represents related
classes which are used within a particular module but are not
defined in the module. A datum host 1034 represents a class,
an instance of which encapsulates an application-specific
object-oriented data structure corresponding to an instantia-
tion of a module.

[0106] A categorical class class 1036 represents a class for
object-oriented programming. The class 1036 has genus
entity 1026. A datum members 1038 represents the members
of a particular class.

[0107] A categorical class host-class 1040 represents an
instantiation of a module. The host-class 1040 has genus
class 1036.

[0108] A categorical class operand 1042 represents a typed
entity in a scope. The operand 1042 has genus entity 1026.
[0109] A categorical class argument 1044 represents an
argument to a member function. The argument 1044 has
genus operand 1042.

[0110] A categorical class member 1046 represents a
member in a class. The member 1046 has genus operand
1042.

[0111] A categorical class member-function 1048 repre-
sents a member function in a class. The member-function
1048 has genus member 1046. A datum arguments 1050
specifies the arguments to a member function.

[0112] A categorical class member-datum 1052 represents
a member datum in a class. The member-datum 1052 has
genus member 1046.

[0113] Refer to FIG. 3. A categorical class type 1054
characterizes the typing of an operand. The type 1054 has
genus element 1024.

[0114] A categorical class void-type 1056 characterizes
the absence of a type. The void-type 1056 has genus type
1054.

[0115] A categorical class value-type 1058 characterizes a
type which is passed by value. The value-type 1058 has
genus type 1054.

[0116] A categorical class bit-type 1060 represents a Bool-
ean value, true or false. The bit-type 1060 has genus
value-type 1058.

[0117] A categorical class integer-type 1062 represents an
integral value. The integer-type 1062 has genus value-type
1058.

[0118] A categorical class cardinal-type 1064 represents a
non-negative integral value. The cardinal-type 1064 has
genus value-type 1058.

[0119] A categorical class text-type 1066 represents a
textual value. The text-type 1066 has genus value-type 1058.
[0120] A categorical class reference-type 1068 character-
izes a type which is passed by reference. The reference-type
1068 has genus type 1054.

US 2007/0256051 Al

[0121] A categorical class compound-type 1070 charac-
terizes a type which corresponds to a collection. The com-
pound-type 1070 has genus type 1054.

[0122] A categorical class sequence-type 1072 character-
izes a sequence of elements. The sequence-type 1072 has
genus compound-type 1070.

[0123] A categorical class value-sequence-type 1074 char-
acterizes a sequence of value-typed elements. The value-
sequence-type 1074 has genus sequence-type 1072.

[0124] A categorical class reference-sequence-type 1076
characterizes a sequence of reference-typed elements. The
reference-sequence-type 1076 has genus sequence-type
1072.

[0125] A categorical class set-type 1078 characterizes a set
of elements. The set-type 1078 has genus compound-type
1070.

[0126] A categorical class value-set-type 1080 character-
izes a set of value-typed elements. The value-set-type 1080
has genus set-type 1078.

[0127] A categorical class reference-set-type 1082 char-
acterizes a set of reference-typed elements. The reference-
set-type 1082 has genus set-type 1078.

[0128] A categorical class map-type 1084 characterizes a
map associating pairs of elements. The map-type 1084 has
genus compound-type 1070.

[0129] A categorical class index-map-type 1086 charac-
terizes a map, of which the range elements are of reference
type and the domain elements are of value type. The
index-map-type 1086 has genus map-type 1084.

[0130] A categorical class scale-map-type 1088 character-
izes a map, of which the range elements are of value type
and the domain elements are of reference type. The scale-
map-type 1088 has genus map-type 1084.

[0131] A categorical class bind-map-type 1090 character-
izes a map, of which both the range and domain elements are
of reference type. The bind-map-type 1090 has genus map-
type 1084.

[0132] A categorical class convert-map-type 1092 charac-
terizes a map, of which both the range and domain elements
are of value type. The convert-map-type 1092 has genus
map-type 1084.

[0133]

services.

A categorical class logger 1094 provides logging

3.1 Host Class

[0134] Refer to FIG. 4. The host 1018 represents an
instantiation of the module. The modules 1020 collects
module specifications. The modules 1020 ranges over
instances of the class module 1028. The modules 1020 is a
meron. A method module 1096 maps module identifiers to
module specifications. A datum module-index 1098 maps
module identifiers to module specifications. The module-
index 1698 ranges over instances of the class module 1028.
A method accept-module 1100 accepts a module specifica-
tion. The types 1022 collects types defined amongst modules
for memory management. The types 1022 ranges over
instances of the class type 1054. The types 1022 is a meron.
A method accept-type 1102 accepts a supplied type instance

Nov. 1, 2007

for accumulation in types 1022. The accept-type 1102
always accepts the supplied type.

3.2 Element Categorical Class

[0135] Refer to FIG. 5. The element 1024 defines a
common base for parsed elements. The element 1024 is a
root-level class of the meta-module 1016. A datum source
1104 identifies the source file and line from which the
element was parsed. The source 1104 is useful for reporting
errors. The source 1104 ranges over scalar text.

3.3 Entity Categorical Class

[0136] Refer to FIG. 6. The entity 1026 represents named
elements. The entity 1026 has genus element 1024. A datum
id 1106 uniquely identifies a particular entity in a global
scope. The id 1106 is required. The id 1106 ranges over
scalar text. A datum term 1108 provides a text-friendly
identifier, not necessarily unique. The term 1108 is used in
the generated particulars of an entity. The term 1108 is
required. The term 1108 ranges over scalar text. A datum
title 1110 provides a text-friendly phrase, suitable for head-
ing a section or figure. The title 1110 ranges over scalar text.
The title 1110 is currently ignored except for module and
class. A datum purpose 1112 describes the purpose of a
particular entity. The purpose 1112 should be a predicate
corresponding to the entity as a subject. The purpose 1112
ranges over scalar text. A datum passage 1114 indicates the
segment in which to present a particular entity. The passage
1114 ranges over scalar text. The passage 1114 should be
restricted to the class 1036 and the module 1028. A datum
remarks 1116 provides primary supplemental descriptive
information pertaining to a particular entity. The remarks
1116 should be a predicate corresponding to the entity as a
subject. The remarks 1116 are presented at the beginning of
the generated particulars of a particular entity. The remarks
1116 ranges over scalar text. A datum notes 1118 provides
secondary supplemental descriptive information pertaining
to a particular entity. The notes 1118 should be a predicate
corresponding to the entity as a subject. The notes 1118 are
presented at the end of the generated particulars of a
particular entity. The notes 1118 ranges over scalar text.

3.4 Module Categorical Class

[0137] Refer to FIG. 7. The module 1028 represents a
collection of interrelated classes for object-oriented pro-
gramming. The module 1028 has genus entity 1026. The
classes 1030 represents the collection of classes within,a
module. The classes 1030 ranges over instances of the class
class 1036. The classes 1030 is a meron. A datum class-
index 1120 associates a particular class 1036 with its unique
id 1106. The class-index 1120 ranges over instances of the
class class 1036. A method accept-class 1122 accepts an
instance of the class 1036 as a constituent of a module. The
accept-class 1122 updates the classes 1030 and the class-
index 1120. The accept-class 1122 fails on duplicate id 1106.
A method resolve-class 1124 resolves a textual identifier to
an instance of the class 1036 which is a constituent of a
module. The resolve-class 1124 uses the class-index 1120. A
method sort-classes 1126 performs topological sort of mod-
ule classes to ensure that no class is defined before its
genera. The forward-classes 1032 represents related classes
which are used within a particular module but are not
defined in the module. The forward-classes 1032 ranges over

US 2007/0256051 Al

instances of the class class 1036. The forward-classes 1032
is a meron. A method accept-forward-class 1128 accepts an
instance of the class 1036 as a forward class definition. The
accept-forward-class 1128 updates the forward-classes 1130
and the class-index 1120. The accept-forward-class 1128
assumes memory management of the supplied class. A
datum root-classes 1132 represents the collection of classes
with a module which do not have any generalizations within
the module. The root-classes 1132 is a subset of the classes
1030. The root-classes 1132 ranges over instances of the
class class 1036. The host 1034 represents a class, an
instance of which encapsulates an application-specific
object-oriented data structure corresponding to an instantia-
tion of a module. The host 1034 is the target for module-
scoped member specifications. The host 1034 instance may
be denoted as a model object or a document object. The host
1034 may contain resolver, depository, factory, reflector, etc.
according to specification. The host 1034 ranges over
instances of the class host-class 1040. The host 1034 is a
meron. A method accept-host 1134 accepts an instance of the
host-class 1040 for assignment to the host 1034. The accept-
host 1134 fails if the host class instance is already defined.
A datum viewer-id 1136 specifies a view operator to be
generated; the generated viewer provides a useful base class
for read-only operators that process an instantiation of a
module. The viewer-id 1136 ranges over scalar text. A datum
editor-id 1138 specifies an edit operator to be generated; the
generated editor provides a useful base class for write-
capable operators that process an instantiation of a module.
The editor-id 1138 ranges over scalar text. A datum factory-
id 1140 specifies a factory operator to be generated; the
generated factory provides text-driven instantiation of
objects from the classes of a module. The factory-id 1140 is
particularly useful for processing markup. The factory-id
1140 ranges over scalar text. A datum factory-root-id 1142
specifies the base class from which factory-generated classes
must derive; cf. the factory-id 1140. The factory-root-id
1142 ranges over scalar text. A datum auditor-id 1144
specifies an auditor operator to be generated; the generated
auditor determines conformance with specified require-
ments. The auditor-id 1144 ranges over scalar text. A datum
reflector-id 1146 specifies a reflector operator to be gener-
ated; the generated reflector provides a run-time represen-
tation of the specialization and generalization relationships
of'the classes of a module. The reflector-id 1146 ranges over
scalar text. A datum parser-id 1148 specifies an external
parser class, for which lexical responders shall be generated
to facilitate generic processing of assignments from predi-
cates. The parser-id 1148 ranges over scalar text. A datum
resolver-id 1150 specifies a resolver operator to be gener-
ated; the generated resolver provides resolution of identifiers
to instances. The resolver-id 1150 uses the member specified
by the resolver-id-field 1152 of the class specified by the
resolver-root-id 1154. The resolver-id 1150 resolves identi-
fiers to instances of the class specified by the resolver-root-id
1154. The resolver-id 1150 ranges over scalar text. The
resolver-id 1150 specializes the editor operator specified by
the editor-id 1138. A datum resolver-root-id 1154 specifies
the common base class for resolution. The resolver-root-id
1154 must have a member datum or function corresponding
to the resolver-id-field 1152. The resolver-root-id 1154
ranges over scalar text. A datum resolver-id-field 1152
specifies the member of the class specified by the resolver-
root-id 1154 which uniquely identifies instances of the class

Nov. 1, 2007

specified by the resolver-root-id 1154. The resolver-id-field
1152 is used by the generated resolver. The resolver-id-field
1152 must be a member datum or member function of the
class specified by the resolver-root-id 1154. The resolver-
id-field 1152 ranges over scalar text. A datum acceptor-id
1156 specifies an acceptor class to be generated; the gener-
ated acceptor serves as a genus class for specific acceptor
classes, also to be generated. The acceptor-id 1156 is par-
ticularly useful for parsing and processing markup. The
acceptor-id 1156 ranges over scalar text. A datum predicator-
id 1158 specifies a predicator class to be generated; the
generated predicator serves as a genus class for specific
predicator classes, also to be generated. The predicator-id
1158 is particularly useful for parsing and processing
markup. The predicator-id 1158 ranges over scalar text. A
method qualifier-id 1160 specifies a qualifer class, special-
izing the predicator, to be generated. A method singleton-id
1162 specifies a singleton class, specializing the predicator,
to be generated. A method plurality-id 1164 specifies a
plurality class, specializing the predicator, to be generated.
A method predicator-sequence-id 1166 specifies a class
providing a sequence of predicators, to be generated. A
method promissary-reference-id 1168 specifies a class pro-
viding a deferred resolution of a textual reference. A method
depository-id 1170 specifies a depository class, holding
promissary references for eventual redemption. A datum
predicator-host-id 1172 specifies a predicator host class to be
generated; the generated predicator host serves predicators
corresponding to predicates. The predicator-host-id 1172 is
particularly useful for processing markup. The predicator-
host-id 1172 ranges over scalar text.

3.5 Class Categorical Class

[0138] Refer to FIG. 8. The class 1036 represents a class
for object-oriented programming. The class 1036 has genus
entity 1026. A datum module 1174 represents a particular
instance of the module 1028 of which a particular class is a
constituent. The module 1174 is complementary to the
classes 1030. The module 1174 ranges over instances of the
class module 1028. A datum genera 1176 represents the
collection of classes from which a particular class is derived.
The genera 1176 includes the closest generalizations of a
particular class. The genera 1176 ranges over instances of
the class class 1036. The members 1038 represents the
members of a particular class. The members 1038 may
include data members and function members. The members
1038 ranges over instances of the class member 1046. The
members 1038 is a meron. A datum member-index 1178
associates members with their scoped identifiers. The mem-
ber-index 1178 ranges over instances of the class member
1046. A datum species 1180 represents the collection of
classes which are derived from a particular class. The
species 1180 are the closest specializations of a particular
class. The species 1180 are useful for depth-first processing
of classes in a module; cf. the root-classes 1132. The species
1180 is complementary to the genera 1176. The species 1180
ranges over instances of the class class 1036. A datum
genera-closure 1182 represents the totality of classes in the
ancestry of a class. The genera-closure 1182 includes all the
generalizations of a particular class. The genera-closure
1182 ranges over instances of the class class 1036. A datum
species-closure 1184 represents the totality of classes
descending from a class. The species-closure 1184 includes
all the specializations of a particular class. The species-

US 2007/0256051 Al

closure 1184 is complementary to the genera-closure 1182.
The species-closure 1184 ranges over instances of the class
class 1036. A datum is-module-root 1186 indicates whether
a particular class lacks any generalizations in its containing
module 1028. The is-module-root 1186 corresponds to
membership in the root-classes 1132. The is-module-root
1186 ranges over scalar boolean. A datum constructs-
markup-element 1188 indicates responsiveness to element
construction in processing markup. The constructs-markup-
element 1188 is applicable to the host only. The constructs-
markup-element 1188 ranges over scalar boolean. A datum
accepts-markup-element 1190 indicates responsiveness to
elements in processing markup. The accepts-markup-ele-
ment 1190 ranges over scalar boolean. A datum accepts-
markup-text 1192 indicates responsiveness to text in pro-
cessing markup. The accepts-markup-text 1192 ranges over
scalar boolean. A datum accepts-markup-predicate 1194
indicates responsiveness to predicates in processing markup.
The accepts-markup-predicate 1194 ranges over scalar bool-
ean. A datum markup-configure 1196 indicates responsive-
ness to element configuration in processing markup. The
markup-configure 1196 ranges over scalar boolean. A datum
markup-commit 1198 indicates responsiveness to element
commitment in processing markup. The markup-commit
1198 ranges over scalar boolean. A datum is-pure-abstract
1200 indicates whether class is not instantiable due to pure
member functions. The is-pure-abstract 1200 is computed at
module instantiation; do not set. The is-pure-abstract 1200
ranges over scalar boolean. A method accept-member 1202
accumulates a member. The accept-member 1202 updates
the members 1038 and the member-index 1178. The accept-
member 1202 fails on duplicate scoped identifiers for mem-
bers. A datum provides-downcast 1204 specifies the provi-
sion of a safe downcast to immediate species of a class. The
provides-downcast 1204 is occasionally useful but easily
abused; beware. The provides-downcast 1204 ranges over
scalar boolean. A datum tags 1206 indicates generic textual
identifiers usable for instantiation of a particular class. The
tags 1206 are especially useful for parsing text and process-
ing markup. The tags 1206 ranges over scalar text. A method
acceptor-host-id 1208 specifies a class which maps tags to
acceptors. A datum audit-requirements 1210 specifies bool-
ean conditions that may be verified by a generated auditor as
specified by the auditor-id 1212. The audit-requirements
1210 ranges over scalar text. A datum auditor-context 1214
supplies reporting context for auditor. The auditor-context
1214 must evaluate to an instance of text. The auditor-
context 1214 ranges over scalar text.

3.6 Host Class Categorical Class

[0139] Refer to FIG. 9. The host-class 1040 represents an
instantiation of a module. The host-class 1040 represents the
totality of an application-specific object-oriented data struc-
ture. The host-class 1040 corresponds to the host 1034. The
host-class 1040 typically occurs in a singleton instance per
application. The host-class 1040 provides a useful target for
parsing, markup, etc. The host-class 1040 has genus class
1036.

3.7 Operand Categorical Class

[0140] Refer to FIG. 10. The operand 1042 represents a
typed entity in a scope. The operand 1042 has genus entity
1026. A datum scope-handle 1216 informally identifies an

Nov. 1, 2007

operand in a scope. The scope-handle 1216 ranges over
scalar text. A method validate-handle 1218 ensures that a
proposed handle does not conflict with C++ reserved words.
A method accept-scope-handle 1220 provides an acceptor
for the scope-handle 1216. A datum scope-id 1222 uniquely
identifies an operand in a scope. The scope-id 1222 is
applicable to members in a class scope and arguments in a
member function scope. The scope-id 1222 ranges over
scalar text. A datum is-const 1224 indicates whether the
operand may be modified in the scope. The is-const 1224
ranges over scalar boolean. A datum type 1226 specifies the
type of an operand. The type 1226 ranges over instances of
the class type 1054.

3.8 Argument Categorical Class

[0141] Refer to FIG. 11. The argument 1044 represents an
argument to a member function. The argument 1044 has
genus operand 1042. A datum position 1228 indicates the
position of the argument in the member function argument
sequence. The position 1228 ranges over scalar cardinal. A
datum arg-default 1230 indicates a default value for the
argument. The arg-default 1230 ranges over scalar text.

3.9 Member Categorical Class

[0142] Refer to FIG. 12. The member 1046 represents a
member in a class. The member 1046 has genus operand
1042. A datum member-class 1232 identifies the class which
specifies the member. The member-class 1232 ranges over
instances of the class class 1036.

3.10 Member Function Categorical Class

[0143] Refer to FIG. 13. The member-function 1048 rep-
resents a member function in a class. The member-function
1048 has genus member 1046. A datum is-static 1234
indicates a class function. The is-static 1234 is invoked
independently of any instance of the class. The is-static 1234
ranges over scalar boolean. A datum is-virtual 1236 indi-
cates a virtual member function. The is-virtual 1236 ranges
over scalar boolean. A datum is-pure 1238 indicates a pure
virtual member function. The is-pure 1238 implies is-virtual
1236, but not vice versa. The is-pure 1238 precludes instan-
tiation of the containing class when set. The is-pure 1238
ranges over scalar boolean. The arguments 1050 specifies
the arguments to a member function. The arguments 1050
ranges over instances of the class argument 1044. The
arguments 1050 is a meron. A datum inline-definition 1240
specifies the inline definition of a member function. The
inline-definition 1240 ranges over scalar text. A datum
definition 1242 specifies the definition of a member func-
tion. The definition 1242 precludes the inline definition of a
member function. The definition 1242 ranges over scalar
text. A datum indicates 1244 describes the meaning of the
return value of a member function. The indicates 1244
should be a complement to “The member returns a [type],
indicating . . . ”. The indicates 1244 ranges over scalar text.

3.11 Member Datum Categorical Class

[0144] Refer to FIG. 14. The member-datum 1052 repre-
sents a member datum in a class. The member-datum 1052
has genus member 1046. A datum is-meron 1246 indicates
that a member datum is a meronym of the containing
instance of the class to which it belongs. The is-meron 1246
indicates that the member datum is to be deleted on deletion

US 2007/0256051 Al

of the containing instance. The is-meron 1246 indicates that,
by default, viewers and editors of the module should recur-
sively visit the member datum when visiting the containing
instance. The is-meron 1246 ranges over scalar boolean. A
datum is-mutable 1248 indicates that non-const access to a
member datum is provided even when the containing
instance is const. The is-mutable 1248 ranges over scalar
boolean. A datum init 1250 indicates an initial value for the
datum at instantiation. The init 1250 ranges over scalar text.
A method predicator-class-id 1252 specifies an identifier for
a predicator class which will mediate transformation from a
textual representation to a type-safe object-oriented element.
The predicator-class-id 1252 identifies a class which is
applicable for direct processing of scalars and meron refer-
ences in predicates and attributes; a promissary reference is
used to process non-meron references. A method promis-
sary-class-id 1254 specifies an identifier for a promissary
class which will mediate deferred transformation from a
textual reference to a type-safe object-oriented element. The
promissary-class-id 1254 identifies a class which is appli-
cable for processing non-meron references in predicates and
attributes. A method acceptor-class-id 1256 specifies an
identifier for an acceptor class which will receive and assign
instances. The acceptor-class-id 1256 identifies a class
which is applicable for processing contained markup ele-
ments. A method generic-acceptor-id 1258 specifies an iden-
tifier for a member function which provides a uniform
acceptance interface (assignment or accumulation) for ele-
ments of the proper type. The generic-acceptor-id 1258
identifies a member function which is required by acceptors
and predicators. A datum acceptor 1260 specifies a member
function to which assignment or accumulation of the datum
is restricted. The acceptor 1260 ranges over instances of the
class member-function 1048. The acceptor 1260 should
indicate a member function which returns a boolean indi-
cating the success of the attempted assignment. A datum
inhibit-predicator 1262 prevents automatic generation of a
predicator for use in parsing and processing markup. The
inhibit-predicator 1262 typically used with an accepter
where the underlying member datum is a secondary target,
e.g. an index associated with a sequence. The inhibit-
predicator 1262 ranges over scalar boolean. A datum tags
1264 specifies textual identifiers usable for instantiation of a
particular class and subsequently for assignment to a par-
ticular member. The tags 1264 are especially useful for
parsing text and processing markup. The tags 1264 ranges
over scalar text. A datum handles 1266 permit scope-specific
alternative identification. The handles 1266 must be unique
in scope. The handles 1266 are used as identifiers in the
generation of convenience member functions. The handles
1266 ranges over scalar text. A method accept-handle 1268
validates and accepts the supplied handle.

3.12 Type Categorical Class

[0145] Refer to FIG. 15. The type 1054 characterizes the
typing of an operand. The type 1054 has genus element
1024. A method type-text 1270 provides a textual represen-
tation of a type. A method is-plural 1272 distinguishes plural
from singleton types. The is-plural 1272 is false, by default;
non-compound types are singular.

Nov. 1, 2007

3.13 Void Type Categorical Class

[0146] Refer to FIG. 16. The void-type 1056 characterizes
the absence of a type. The void-type 1056 has genus type
1054. A method type-text 1274 returns “Void”.

3.14 Value Type Categorical Class

[0147] Refer to FIG. 17. The value-type 1058 character-
izes a type which is passed by value. The value-type 1058
has genus type 1054.

3.15 Bit Type Categorical Class

[0148] Refer to FIG. 18. The bit-type 1060 represents a
Boolean value, true or false. The bit-type 1060 has genus
value-type 1058. A method type-text 1276 returns “Bit”.

3.16 Integer Type Categorical Class

[0149] Refer to FIG. 19. The integer-type 1062 represents
an integral value. The integer-type 1062 has genus value-
type 1058. A method type-text 1278 returns “Integer”.

3.17 Cardinal Type Categorical Class

[0150] Refer to FIG. 20. The cardinal-type 1064 repre-
sents a non-negative integral value. The cardinal-type 1064
useful for counting. The cardinal-type 1064 has genus
value-type 1058. A method type-text 1280 returns “Cardi-
nal”.

3.18 Text Type Categorical Class

[0151] Refer to FIG. 21. The text-type 1066 represents a
textual value. The text-type 1066 has genus value-type 1058.
A method type-text 1282 returns “Text”.

3.19 Reference Type Categorical Class

[0152] Refer to FIG. 22. The reference-type 1068 charac-
terizes a type which is passed by reference. The reference-
type 1068 corresponds to a class. The reference-type 1068
has genus type 1054. A datum reference-class-id 1284
identifies the class to which a reference type corresponds.
The reference-class-id 1284 ranges over scalar text. A
method type-text 1286 returns the reference-class-id 1284.

3.20 Compound Type Categorical Class

[0153] Refer to FIG. 23. The compound-type 1070 char-
acterizes a type which corresponds to a collection. The
compound-type 1070 is parameterized by one or more
subsidiary types. The compound-type 1070 has genus type
1054. A datum parameters 1288 specifies the subsidiary
types by which a compound type is parameterized. The
parameters 1288 ranges over instances of the class type
1054. A method type-text 1290 has unspecified purpose. A
method compound-text 1292 specifies the particular com-
pound, e.g. sequence, set, etc.. A method is-plural 1294 has
unspecified purpose. The is-plural 1294 is true, by default;
compound types are plural. A datum range 1296 specifies the

US 2007/0256051 Al

characteristic subsidiary type of the elements in the com-
pound type. The range 1296 ranges over instances of the
class type 1054.

3.21 Sequence Type Categorical Class

[0154] Refer to FIG. 24. The sequence-type 1072 charac-
terizes a sequence of elements. The sequence-type 1072
specifies a compound element that permits efficient addition
or removal of elements at the front or back of the sequence.
The sequence-type 1072 specifies a compound element that
permits direct access to elements by position in the
sequence. The sequence-type 1072 specifies a compound
element that permits iteration of the elements in the
sequence. The sequence-type 1072 has genus compound-
type 1070. A method compound-text 1298 has unspecified
purpose. The compound-text 1298 returns “Sequence”.

3.22 Value Sequence Type Categorical Class

[0155] Refer to FIG. 25. The value-sequence-type 1074
characterizes a sequence of value-typed elements. The
value-sequence-type 1074 has genus sequence-type 1072. A
datum value-range 1300 specifies the value type of the
sequence eclements. The value-range 1300 ranges over
instances of the class value-type 1058.

3.23 Reference Sequence Type Categorical Class

[0156] Refer to FIG. 26. The reference-sequence-type
1076 characterizes a sequence of reference-typed elements.
The reference-sequence-type 1076 has genus sequence-type
1072. A datum reference-range 1302 specifies the reference
type of the sequence elements. The reference-range 1302
ranges over instances of the class reference-type 1068.

3.24 Set Type Categorical Class

[0157] Refer to FIG. 27. The set-type 1078 characterizes
a set of elements. The set-type 1078 specifies a compound
element that permits efficient determination of the presence
or absence of a particular element in the set. The set-type
1078 specifies a compound element that permits iteration of
elements in the set. The set-type 1078 has genus compound-
type 1070. A method compound-text 1304 has unspecified
purpose. The compound-text 1304 returns “Set”.

3.25 Value Set Type Categorical Class

[0158] Refer to FIG. 28. The value-set-type 1080 charac-
terizes a set of value-typed elements. The value-set-type
1080 has genus set-type 1078. A datum value-range 1306
specifies the value type of the set elements. The value-range
1306 ranges over instances of the class value-type 1058.

3.26 Reference Set Type Categorical Class

[0159] Refer to FIG. 29. The reference-set-type 1082
characterizes a set of reference-typed elements. The refer-
ence-set-type 1082 has genus set-type 1078. A datum ref-
erence-range 1308 specifies the reference type of the set
elements. The reference-range 1308 ranges over instances of
the class reference-type 1068.

3.27 Map Type Categorical Class

[0160] Refer to FIG. 30. The map-type 1084 characterizes
a map associating pairs of elements. The map-type 1084

Nov. 1, 2007

specifies a compound element that permits association of a
range element with a supplied domain element. The map-
type 1084 specifies a compound element that permits itera-
tion of pairs. The map-type 1084 has genus compound-type
1070. A datum domain 1310 specifies the subsidiary type of
the domain elements. The domain 1310 ranges over
instances of the class type 1054. A method compound-text
1312 has unspecified purpose. The compound-text 1312
returns “Map”.

3.28 Index Map Type Categorical Class

[0161] Refer to FIG. 31. The index-map-type 1086 char-
acterizes a map, of which the range elements are of reference
type and the domain elements are of value type. The
index-map-type 1086 has genus map-type 1084. A datum
value-domain 1314 specifies the value type of the map
domain. The value-domain 1314 ranges over instances of the
class value-type 1058. A datum reference-range 1316 speci-
fies the reference type of the map range. The reference-range
1316 ranges over instances of the class reference-type 1068.

3.29 Scale Map Type Categorical Class

[0162] Refer to FIG. 32. The scale-map-type 1088 char-
acterizes a map, of which the range elements are of value
type and the domain elements are of reference type. The
scale-map-type 1088 has genus map-type 1084. A datum
reference-domain 1318 specifies the reference type of the
map domain. The reference-domain 1318 ranges over
instances of the class reference-type 1068. A datum value-
range 1320 specifies the value type of the map range. The
value-range 1320 ranges over instances of the class value-
type 1058.

3.30 Bind Map Type Categorical Class

[0163] Refer to FIG. 33. The bind-map-type 1090 char-
acterizes a map, of which both the range and domain
elements are of reference type. The bind-map-type 1090 has
genus map-type 1084. A datum reference-domain 1322
specifies the reference type of the map domain. The refer-
ence-domain 1322 ranges over instances of the class refer-
ence-type 1068. A datum reference-range 1324 specifies the
reference type of the map range. The reference-range 1324
ranges over instances of the class reference-type 1068.

3.31 Convert Map Type Categorical Class

[0164] Refer to FIG. 34. The convert-map-type 1092
characterizes a map, of which both the range and domain
elements are of value type. The convert-map-type 1092 has
genus map-type 1084. A datum value-domain 1326 specifies
the value type of the map domain. The value-domain 1326
ranges over instances of the class value-type 1058. A datum
value-range 1328 specifies the value type of the map range.
The value-range 1328 ranges over instances of the class
value-type 1058.

3.32 Logger Categorical Class

[0165] Referto FIG. 35. The logger 1094 provides logging
services. The logger 1094 is a root-level class of the meta-
module 1016.

4 Media Scanner

[0166] A simple application demonstrates the use of the
module generator. The demonstration application recur-

US 2007/0256051 Al

sively scans one or more file-system directories looking for
media files. The media files which are detected are presented
in a collection of interlinked HTML pages. The pages of the
presentation reflect the directory organization of the scanned
directories. Each discovered media file is presented in a
hypertext link. The pages of the presentation are suitable for
service by a web server running on a dedicated media
device, such as a digital video recorder. Activation of a link
presenting a particular media file generates a request to play
the associated media on the dedicated media device. The
application may form a potentially useful element for
remote, web-oriented management of a dedicated media
device.

[0167] The demonstration application uses a representa-
tion of media files in a file system. The representation uses
an object-oriented module including a family of interrelated
classes. The classes represent files and directories. The
object-oriented module is specified using a module specifi-
cation language.

[0168] FIG. 36 specifies a class hierarchy which is useful
for the media scanner application. The specification is an
expression in the synthetic module specification language,
which is part of the module generator. Specifications are
typically written by a human developer but in some cases a
specification may be provided by a computer program.
Specifications are processed by a parser to construct a
representation of the specified module. The representation is
processed to generate object-oriented classes and documen-
tation.

[0169] Refer to FIG. 36. A module media-scanner 1330
represents media files arranged in a file system. The media-
scanner 1330 includes the following classes. A class file
1332 represents a file in a file system, including regular files
and directories. The file 1332 has no genera. A class direc-
tory 1334 represents a file system directory, potentially
containing files, some of which may themselves be direc-
tories. The directory 1334 specializes the file 1332. A class
top-directory 1336 represents a topmost directory from
which a scan has been initiated. The top-directory 1336
specializes the directory 1334. A class regular-file 1338
represents a regular file, i.e. a file which is not a directory.
The regular-file 1338 specializes the file 1332. A class
audio-file 1340 represents an audio file. The audio-file 1340
specializes the regular-file 1338. A class video-file 1342
represents a video file. The video-file 1342 specializes the
regular-file 1338.

4.1 Specifying a Class Hierarchy

[0170] FIG. 36 is a skeletal reprentation of the module
media-scanner 1330; it specifies only the module’s class
hierarchy. At the outermost level, the module media-scanner
1330 is specified. A module is represented by a top-level
identifier, optional predicates (none are shown here), and a
body. The body is delimited by curly brackets. The body
defines a scope within which classes may be specified.
Members of a host class may also be specified in the module
scope; the host will be considered below.

[0171] A module body may contain class specifications. A
class is specified by an identifier, optional predicates, and a
body delimited by curly brackets. The body defines a class
scope within which data members, member functions, and
specialized classes may be specified. In FIG. 36, the class
file 1332 is specified. Within the body of the file 1332, the
species class directory 1334 and the species class regular-file

Nov. 1, 2007

1338 are specified; the position of specialization classes
indicates their relationship to the genus class file 1332.
Similarly, the class top-directory 1336, specified within the
scope of the directory 1334, is indicated as a species of the
directory 1334. The classes audio-file 1340 and video-file
1342 are indicated as species of the regular-file 1338 by their
position with the body of the regular-file 1338.

4.2 Specifying Members

[0172] FIG. 36 illustrates a specification of genus and
species relationships among classes in a class hierarchy.
Data members and member functions may also be specified
using the specification language. A data member is specified
by a type, an identifier, optional predicates, and a semicolon
terminator. A member function is specified by a type, an
identifier, an argument list, optional predicates, and a semi-
colon terminator. The argument list is delimited by paren-
theses; the arguments, if any, are separated by comments.
Each argument is specified by a type, an optional identifier,
and optional predicates.

[0173] Refer to FIG. 37, which expands the specification
of FIG. 36 to incorporate members and predicates. The class
file 1332 includes a member datum parent 1344, a reference
to an instance of the directory 1334. A text member datum
name 1346 represents the name of a particular file in its
containing directory. A member function path 1348, return-
ing text, provides the full path to a particular file. The
definition of the path 1348 is augmented by several predi-
cates (virtual and const); predicates will be considered
below the immediately following discussion of types.
[0174] The parent 1344 and the name 1346 are respec-
tively typed as a reference to an instance of the directory
1334 and as text. These two types illustrate two of the three
most important type distinctions in the module generator:
value and reference types. The name 1346 is of text type.
Text is considered a value type in the module generator. As
such, all the relevant information about the text is contained
in its value. Other value types include integer, cardinal, and
bit. Value types are scalar; they may be ordered (scaled).
Value types correspond to things that can be measured, read,
and copied. The relationships that value types represent are
denoted as properties (or qualities, in the case of bit values),
by analogy with such physical properties as mass, tempera-
ture, volume, etc., to emphasize measurablity. In object-
oriented implementations, instances of value types are usu-
ally transferred by copying values.

[0175] The parent 1344 is of reference type; it refers to an
instance of a class from the module. Reference types are
so-called because they permit a reference to an entity but the
content of the reference itself is fundamentally arbitrary. A
reference is like a name; it’s a label which picks out a
particular entity but the content of the label is only signifi-
cant for its uniqueness. Having a reference, like knowing a
name, confers no intrinsic information. Also like a name, a
reference is potentially useful for obtaining information
about the entity to which it refers. References do not support
measurement. References may be tested for equality but
ordering of references is meaningless. Of course, entities
may be ordered by evaluating properties of the entities, and
using an ordering of the evaluated properties to order the
entities. The relationships that reference types represent are
denoted as associations, to emphasize that they associate
entities. In object-oriented implementations, instances of
reference types are usually transferred by copying pointers.

US 2007/0256051 Al

[0176] A third type distinction recognized by the module
generator is the compound type. A compound type repre-
sents a collection of scalars or entities; hence it is charac-
terized by both the nature of the collection and by the
underlying type of the instances which it collects. The
module generator supports sequence, set, and map collec-
tions. A sequence provides an ordered collection, to which
elements may be added or removed at the front or the back.
A set provides a collection of distinct elements (no dupli-
cation); a set also provides an efficient determination of
whether or not an element is a member. A map provides an
efficient association between domain elements and range
elements. The class directory 1334 specifies a member
datum files 1350, which is a set of references to instances of
the file 1332.

[0177] Member functions may also be specified. The
member function path 1348, from the class file 1332,
specifies a member function returning a textual value. A
member function is characterized by a return type and an
argument list (which may be empty, as for the path 1348).
The arguments, like the return value, are typed. Following
the arguments, optional predicates may provide supplemen-
tal information about the member function, including quali-
fiers such as virtual and const, and even the definition
(implementation) of the member function.

4.3 Predicates

[0178] The specification of the member datum files 1350
is augmented by a predicate which qualifies the files 1350 as
a meron. The meron qualifier (from meronym, part of a
larger whole) indicates that the files 1350 should be con-
sidered a part relative to a whole represented by the con-
taining instance of the directory 1334. The meron relation
indicates a particularly close relationship between the con-
taining object and the contained member datum; the relation
may indicate such significant consequences as memory
management, implicit traversal, deep versus shallow copy,
etc.

[0179] The meron predicate on the files 1350 illustrates a
particularly simple predicate. In general, predicates provide
supplemental information about the various module entities
(classes, members, modules, etc.). Predicates are analogous
to attributes in XML or HTML but there are syntactic and
semantic differences. Predicates should be interpreted as
combining with entities to form synthetic sentences. An
entity (such as the member datum files 1350) provides the
subject of the synthetic sentence. The predicate provides a
“verb” and, optionally one or more complements. Comple-
ments are often denoted objects, but the potential confusion
with the objects of object-oriented programming favors a
distinct term. The predicate verb, typically denoted a rela-
tion, need not be a lexical verb. Many predicate relations
correspond to intransitive verbs, especially variations on
“is” and “has.” Often the verb is implicit; for example, the
meron predicate “virtual,” applied to the member function
path 1348, indicates the virtuality of the member function.
“Virtual” is of course an adjective; more properly, the
relation could be “is-virtual”, or an “is” relation could be
combined with a “virtual” complement. However it seems
most convenient to keep the relation atomic, and use the
simple and familiar terminology.

[0180] Predicates may incorporate complements. Depend-
ing on the predicate relation, zero, one or several comple-
ments may be appropriate. For example, the virtual relation

Nov. 1, 2007

requires no complement. Relations such as “purpose” or
“term” may require a single complement. A relation such as
“note” may combine with several complements. Relations
lacking a complement are denoted qualifiers. Relations
accepting a single complement are denoted singletons. Rela-
tions accepting several complements are denoted pluralities.
[0181] In the specification language, predicates are delim-
ited by square brackets, defining a predicate scope. Within a
predicate scope, one or more predicates may be present. A
predicate is separated from a successor predicate by a
semicolon. Each predicate consists of a relation and, option-
ally, one or more complements. A complement is separated
from a successor complement by a comma.

[0182] Some important relations include virtual, const,
and meron. The virtual relation, a qualifier, indicates the
virtuality of a member function. A virtual member function
is specified by a genus class subject to specialization by a
species class. Virtuality is an extremely useful capability in
object-oriented programming. The use of virtual functions
permits diverse specializations to be generically driven,
effectively decoupling the driver from the specializations. In
object-oriented jargon, virtuality is a technique for obtaining
polymorphism, which is access to diverse behavior under a
common interface. The const relation, a qualifier, indicates
that the operand to which it is applied is not subject to any
change of state. The const qualifier may be applied to a
member function or an argument of a member function. The
meron qualifier, applied to a member datum, indicates the
part/whole relationship standing between the member datum
and its containing instance.

4.4 Host Specification

[0183] The classes so far considered have specified rep-
resentations of entities that are relevant to the media-scanner
application: files, directories, etc. The specified classes may
be instantiated to provide objects (instances), each of which
represents a particular entity from the application domain: a
particular file, a particular directory, etc. A single class may
be used to instantiate an indefinite number of objects; the
details of the individual instantiations are determined by the
context in which the application runs (i.e. the particular file
system directories which are scanned). When objects are
instantiated to represent entities, and associations between
entities are represented by assignment to object members, an
application-specific object-oriented data structure is con-
structed. This data structure in its entirety represents the
specific context in which the application is operating. The
processing which is performed by the application may be
simplified by presenting the entire application-specific data
structure in a unitary element, of which there is exactly one
per application. This unitary element is denoted a host, since
it serves the entire application-specific object-oriented data
structure.

[0184] In the media scanner application, a class host 1352
fulfils the duties of the host. The module generator provides
the host 1352 according to the specification. Members
specified in the module scope are provided in the host. For
the media scanner, those members include a member datum
root-files 1354. The application is directed to scan one or
more top-level files; these are recursively scanned to identify
media files and generate an HTML presentation. The top-
level files which initiate the scan are collected in the
root-files 1354. The collected top-level files are a natural
starting point for top-down processing. In more sophisti-

US 2007/0256051 Al

cated applications, a generated host may provide random
access to entities, typically via a textual identifier. A host
may also present entities organized by class in some appli-
cations.

[0185] The module generator provides a host class upon
request. The host class in turn may be instantiated to provide
a host instance. Unlike classes specified in the module
scope, however, only a single instance of the host is typically
instantiated in an application. The single host instance
provides convenient access to the multitude of entity
instances that characterize the application context.

4.5 Syntax Summary

[0186] All of the principal elements of the module gen-
erator’s specification language have been introduced. To
recap, at the top level a module is specified by a name,
optional predicates, and a scope delimited by curly brackets.
Within the module scope, classes and host members are
specified. A class specification consists of a name, optional
predicates, and a scope delimited by curly brackets. Within
a class scope, member and class specifications may appear.
Member specifications (including host member specifica-
tions in the module scope) include specifications for member
data and member functions. A member datum is specified by
a type, a name, optional predicates, and a terminal semico-
lon. A member function is specified by a type, a name, an
argument list, optional predicates, and a terminal semicolon.
Types range over values, references, and collections. Values
include text, integer, bit, etc. References indicate instances
of specified classes. Compound types include set, sequence,
and map. Compound types further indicate one or more
constituent types. Predicates specify supplemental specifi-
cations for entities including modules, classes, and mem-
bers. Predicates are delimited by square brackets; individual
predicates are separated by a semicolon. Each predicate
includes a textual relation and optional textual complements.
Plural complements are separated by a comma. Shell-style
comments are also permitted; the hash-mark (octothorpe)
indicates a comment which continues to the end of a line.

[0187] Refer to FIG. 36. A module media-scanner 1330
represents media files arranged in a file system. The media-
scanner 1330 includes the following classes. A class file
1332 represents a file in a file system, including regular files
and directories. The file 1332 has no genera. A class direc-
tory 1334 represents a file system directory, potentially
containing files, some of which may themselves be direc-
tories. The directory 1334 specializes the file 1332. A class
top-directory 1336 represents a topmost directory from
which a scan has been initiated. The top-directory 1336
specializes the directory 1334. A class regular-file 1338
represents a regular file, i.e. a file which is not a directory.
The regular-file 1338 specializes the file 1332. A class
audio-file 1340 represents an audio file. The audio-file 1340
specializes the regular-file 1338. A class video-file 1342
represents a video file. The video-file 1342 specializes the
regular-file 1338.

[0188] Refer to FIG. 37. The module media-scanner 1330
represents media files arranged in a file system. A class host
1352 represents an instantiation of the module. The media-
scanner 1330 includes the following operator classes. A
class viewer 1356 provides a base class for systematic

Nov. 1, 2007

read-only processing of instantiations of the module. A class
factory 1358 constructs instances of module classes in
response to textual tags.

4.6 Host

[0189] Refer to FIG. 37. The class host 1352 represents an
instantiation of the module. The host 1352 includes the
following members: a member datum root-files 1354.
[0190] The member datum root-files 1354 provides a set
of'instances of the file 1332. The root-files 1354 collects files
from which the specified scan is initiated. The root-files
1354 is a meronym of the host 1352.

4.7 File

[0191] Refer to FIG. 37. The class file 1332 represents a
file in a file system, including regular files and directories.
The file 1332 has no genera; it is a root class of the
media-scanner 1330. The file 1332 is specialized by the
directory 1334. The file 1332 is specialized by the regular-
file 1338. The file 1332 includes the following members: a
member datum parent 1344, a member datum name 1346,
and a member function path 1348.

[0192] The member datum parent 1344 provides an
instance of the directory 1334. The parent 1344 represents
the directory containing a particular file.

[0193] The member datum name 1346 provides a text
value. The name 1346 represents the name of a particular file
in its containing directory.

[0194] The member function path 1348 returns a text
value. The path 1348 provides the full path to a particular
file. The path 1348 is virtual. The path 1348 is const.

4.8 Directory

[0195] Refer to FIG. 37. The class directory 1334 repre-
sents a file system directory, potentially containing files,
some of which may themselves be directories. The directory
1334 specializes the file 1332. The directory 1334 is also
known as a folder. The directory 1334 is specialized by the
top-directory 1336. The directory 1334 includes the follow-
ing members: a member datum files 1350 and a member
function accept 1360.

[0196] The member datum files 1350 provides a set of
instances of the file 1332. The files 1350 collects represen-
tations of files contained in the directory. The files 1350 is
a meronym of the directory 1334.

[0197] The member function accept 1360 returns a bit
value. The accept 1360 receives a file representation for
inclusion in the directory. The accept 1360 accumulates files
the the files 1350; also sets the file’s parent 1344 to the
accepting directory.

4.9 Top Directory

[0198] Refer to FIG. 37. The class top-directory 1336
represents a topmost directory from which a scan has been
initiated. The top-directory 1336 specializes the directory
1334. The top-directory 1336 has an empty parent 1344. The
top-directory 1336 includes the following members: a mem-
ber function path 1362.

[0199] The member function path 1362 returns a text
value. The path 1362 provides the full path to a particular
file. The path 1362 is virtual. The path 1362 is const. The

US 2007/0256051 Al

path 1362 is specialized since the the parent 1344 is empty;
the name 1346 contains the full path.

4.10 Regular File

[0200] Refer to FIG. 37. The class regular-file 1338 rep-
resents a regular file, i.e. a file which is not a directory. The
regular-file 1338 specializes the file 1332. The regular-file
1338 is specialized by the audio-file 1340. The regular-file
1338 is specialized by the video-file 1342. The regular-file
1338 does not specify any members.

4.11 Audio File

[0201] Refer to FIG. 37. The class audio-file 1340 repre-
sents an audio file. The audio-file 1340 specializes the
regular-file 1338. The audio-file 1340 does not specify any
members.

4.12 Video File

[0202] Refer to FIG. 37. The class video-file 1342 repre-
sents a video file. The video-file 1342 specializes the regu-
lar-file 1338. The video-file 1342 does not specify any
members.

4.13 Media Scanner Module Products

[0203] The products of the module generator include
various classes from the specification. There are many
product details but these are not particularly difficult when
the general approach to the products is evident. Two broad
categories of products are provided by the generator: docu-
mentation products and code products. Consideration of
documentation products is deferred. Code products may be
conveniently divided into two categories: entity-level
classes, and module-level classes. The entity-level classes
include classes specified at or below the module scope in
expressions in the module-specification language. For the
media scanner, these are classes like the file 1332, the
directory 1334, etc. Entity-level classes are typically repre-
sentative of entities in the application domain. Thus, a media
scanner represents files and directories.

[0204] Module-level classes represent elements that are
common across application domains. Such elements in the
media scanner include the host 1352, the viewer 1356, and
the factory 1358. Any application might benefit from host,
viewer, and factory classes. Of course, these classes may be
highly customized according to the particulars of the appli-
cation domain entities corresponding to entity-level class
specifications (e.g. files and directories). However the
“roles” of host, viewer, and factory are common to many
application domains.

[0205] In a typical application, instances of the entity-
level classes proliferate in accordance with the application
context (e.g. input files). Instances of entity-level classes are
typically created dynamically in correspondence with ele-
ments of input data. In contrast, module-level classes typi-
cally occur in individuals in a given application. A single
host is typical; likewise a single factory. One or a few
viewers are typical, each corresponding to particular prod-
ucts. The module-level constituency is determined at com-

Nov. 1, 2007

pile time; the entity-level instances can only be determined
at run time in accordance with the particular data that defines
the application context.

4.13.1 Module-Scoped File Product Class

[0206] Refer to FIG. 38. Recall that two member data
were specified for the class file 1332: the parent 1344, an
instance of the directory 1334, and the name 1346, an
instance of text. Declarations for these members are found
in the product class. The members are declared private, in
keeping with standard object-oriented practice. Access to the
members is mediated by various member functions, as
shown. Note that the parent 1344 is declared a pointer;
reference instances are implemented as pointers. By con-
trast, the name 1346 is simply a text value. A declaration for
the specified member function path 1348 is also shown.
[0207] A generated member function mediates dispatch to
an instance of the viewer 1356. This virtual dispatch permits
a generic dispatch to a genus instance (e.g. an instance of the
file 1332) to be automatically specialized to a view of
particular species (e.g. an instance of the directory 1334).
[0208] Refer to FIG. 39. Since the specification has
requested the viewer 1356, the virtual dispatch member
function was generated, as shown. The viewer 1356 pro-
vides a view member function for each entity-level class;
each entity-level class provides a viewer dispatch member
function, which specializes any generic viewer member
functions, e.g., that of the file 1332, as depicted. Each viewer
dispatch invokes the particular view member function of the
viewer 1356. This permits a client’s invocation of the
generic dispatch to invoke the appropriate specific view in
the viewer 1356. This is a useful idiom which will be
demonstrated in the application code below. The idiom is
closely related to the “visitor pattern,” popularized by
Gamma et. al, “Design Patterns”, Addison-Wesley (1995),
ISBN 0-201-63361-2, pp. 331-344.

4.13.2 Module-Level Host Product Class

[0209] Refer to FIG. 40. Recall that one member was
specified in module scope and thus for incorporation into the
generated host: the member datum root-files 1354, a set of
instances of the file 1332. Additional member data are also
provided: an instance of the factory 1358 and an instance of
a logger. Note that access to the root-files 1354 is provided
by reference; various iterators for the collection are also
provided. A constructor and destructor are provided. The
destructor deletes the constituents of the root-files 1354, due
to the specification of the root-files 1354 as a meron. The
copy constructor and assignment operator are declared pri-
vate to indicate that copy and assignment of a host instance
is prohibited. Typically a single host instance is provided in
an application. Host instances are typically passed by ref-
erence.

4.13.3 Module-Level Viewer Product Class

[0210] Refer to FIG. 41. The class viewer 1356 provides
a handy base class for processors that use variations on the
“visitor” pattern. The viewer 1356 provides a distinct view
method for each entity-level target class. By default, these
methods recursively view any meron member data of the
target class, then apply the appropriate view-base method for
each immediate genus of the target class. The boolean value
returned reflects the successful processing of each meron

US 2007/0256051 Al

and each genus, or simply true if there are no merons or
genera. For convenience, a view-aggregate member function
is provided for relevant collections; these return success
according to the success of viewing each constituent of the
aggregate.

[0211] Refer to FIG. 42. Implementations for some of the
member functions are shown. An instance of the file 1332
lacks any meron members, so it simply invokes the view-
base, which, in turn, returns boolean success, as the file 1332
lacks genera. The aggregate viewer of a file-set invokes an
aggregate viewer on an view iterator. The aggregate viewer
for the view iterator invokes the viewer dispatch for each
constituent; depending on the particular species, a particular
view method of the viewer 1356 will be dispatched. In the
particular view member function for instances of the direc-
tory 1334, an aggregate view is invoked for the meron
member datum files 1350. The view-base for the directory
1334 is then invoked, which in turn invokes a view for the
genus file 1332.

[0212] The viewer 1356 itself doesn’t do any actual work
but it does provide a useful traversal framework which is
conveniently compartmentalized. A typical viewer specifies
the viewer 1356 as a genus, then specializes one or more of
the view methods to perform useful work. Typically the
useful work may include of some sort of accumulation or
output production related to the particular elements that are
encountered in the traversal. An example is the HTML writer
class, described below.

4.13.4 Module-Level Factory Product Class

[0213] Refer to FIG. 43. The class factory 1358 provides
construction of instances of entity-level classes in response
to textual tags. The class file 1332 was designated as the
factory root; the factory 1358 provides instances constructed
from the closure of the species of the file 1332 (i.e. species,
species of species, etc.). A member function instantiate 1364
provides the construction. A textual tag is supplied to the
member function, and an instance of the file 1332 is
returned, unless the tag is unrecognized, in which case a zero
pointer indicates failure.

[0214] The file 1332 defines static instantiator functions
for each target class; these simply invoke the appropriate
constructor and return the constructed element. However the
returned element is “genericized” to the factory root, the file.
1332. This is a valid operation since any instance of a
species class is also an instance of a corresponding genus
class.

[0215] A map member is defined which associates the
instantiators to textual tags. The map is initialized in the
constructor 1366. The map is used in the instantiate 1364 to
obtain a static instantiator from the supplied textual tag. The
static instantiator, if found, is invoked to obtain an instance
of the file 1332.

4.14 Media Scanner Application

[0216] The module generator has done its work; the mod-
ule specification has been processed to provide product
classes. To get a complete application, however, additional
components are required. A class builder 1368 traverses the
file system; the builder 1368 will construct an application-
specific data structure consisting of interlinked specializa-
tions of the file 1332. The data struture will reside in an
instance of the host 1352. The builder 1368 will make use of

Nov. 1, 2007

the factory 1358. A class writer 1370 produces the HTML
product. The writer 1370 processes a host instantiation. A
command-line application 1372 brings together the builder
1368, host 1352, and writer 1370.

4.14.1 Builder

[0217] Refer to FIG. 44. The class builder 1368 recur-
sively scans the file system, starting from a specified file.
Most of the nitty-gritty work is performed by a base class
file-walker 1374, the file-walker 1374 delivers notifications
via virtual member functions, which are specialized by the
builder 1368. The file-walker 1374 is an adaptation based on
W. Richard Stevens, “Advanced Programming in the Unix
Environment”, Addison-Wesley (1992), ISBN 0-201-56317-
7, pp. 108-111. Stevens’ implementation in turn follows
closely the Unix library function nftw. The file-walker 1374
will not be considered in detail. Note, however, that the
file-walker 1374 provides a member function visit 1376
which initiates a recursive scan starting from the path
specified by its textual argument.

[0218] An instance of the builder 1368 is provided with an
instance of the host 1352 at construction; the notifications of
files are translated to operations on the supplied host and its
constituents.

[0219] The builder 1368 provides responders which are
responsive to notifications from the base class, correspond-
ing to events in the file-system traversal. The responders are
member functions, specialized from their generic definitions
in the base class: a member function root-dir-open 1378, a
member function root-dir-close 1380, a member function
dir-open 1382, a member function dir-close 1384, and a
member function regular-file 1386. These member functions
will be considered in detail below. An instance of the builder
1368 maintains a member stack of instances of the directory
1334, the directory stack, corresponding to directories which
have been entered but not yet exited. An instance of the
builder 1368 also maintains a PCRE regular expression
which is used to compute file names and extensions from
supplied paths. The PCRE (Perl-Compatible Regular
Expression) library is widely used for text processing in C
and C++ programs; documentation is readily available in
Unix distributions and online (cf. http://www.pcre.org/).

[0220] Refer to FIG. 45. The member function root-dir-
open 1378 is invoked upon entering a root directory (i.e. a
directory specified in an invocation of the visit 1376). An
instance of the top-directory 1336 is created, named, pro-
vided to the host, and pushed onto the stack. The comple-
mentary member function root-dir-close 1380 (not shown) is
invoked upon exiting a root directory. The stack is popped.

[0221] The member function dir-open 1382 is invoked
upon entering a non-root directory. An instance of the
directory 1334 is created, named, provided to the topmost
directory on the stack, and pushed onto the stack. The
complementary member function dir-close 1384 (not
shown) is invoked upon exiting a non-root directory. The
directory stack is popped.

[0222] The member function regular-file 1386 is invoked
upon encountering a regular file (i.e. a file which is not a
directory). The name of the regular file is processed by
execution of the regular expression to obtain a file extension.
The file extension is supplied to the instantiate 1364; an
instance of the file 1332 is returned if the extension is

US 2007/0256051 Al

recognized. If a file instance is returned, it’s named and
provided to the topmost directory on the stack.

4.14.2 Writer

[0223] The writer 1370 is necessarily burdened with vari-
ous details that are germane to the generation of a family of
interlinked HTML files and directories. Most of these details
are unrelated to this demonstration so a cursory description
will suffice. A class writer 1370, specializing the viewer
1356, processes an instance of the host 1352 to generate
interlinked HTML pages and directories. A class page 1388
represents individual HTML pages in the output.

[0224] Referto FIG. 46. The class page 1388 represents an
HTML page consisting of links to audio, video, and direc-
tory pages. Audio, video, and page instances are accumu-
lated. An instance of the page 1388 is specified by a path and
a name, indicated where the HTML file shall be written. A
write method provides actual HTML, including links to
parent and child pages, as well as links to video and audio
files.

[0225] Refer to FIG. 47. The class writer 1370 specializes
the viewer 1356. An instance of the writer 1370 is supplied
with an instance of the host 1352 and a textual target
directory on construction. The writer 1370 provides view
methods for the top-directory 1336, the directory 1334, the
audio-file 1340, and the video-file 1342. The writer 1370
maintains a stack of instances of the page 1388, each of
which corresponds to a scanned file system directory which
has been entered but not yet exited. An instance of the page
1388 provides a presentation of a file-system directory. A
top-level index page is also generated, collecting all of the
top-level directories from which scans were initiated.

[0226] Refer to FIG. 48. A dir-page member function
captures the processing requirements common to instances
of the directory 1334, including its specialization the top-
directory 1336. The instance of the directory 1334 is pre-
sented in a corresponding instance of the page 1388. A
directory is created in the file system if it doesn’t already
exit. The constituents of the supplied instance of the direc-
tory 1334 are recursively visited, in sorted order. The
corresponding instance of the page 1388 is written. The page
instance is accumulated to topmost stack page.

[0227] Refer to FIG. 48. The specialized view member
functions for instances of the top-directory 1336 and the
directory 1334 are shown. These member functions special-
ize the corresponding view member functions of the viewer
1356. The specialized member functions invoke distinct
constructors for an instance of the page 1388, corresponding
to slightly different requirements for top-level and other
directories. Then presentation is delegated to the dir-page
member function described above.

[0228] Refer to FIG. 48. An aggregate viewer member
function is shown, as required by the dir-page member
function. The aggregate viewer simply traverses the collec-
tion and invokes the generic viewer dispatch. This will result
in dispatch to the appropriate specialized view. The special-
ized view for instances of the directory 1334 is described
above. The specialized view for instances of the audio-file
1340 and the video-file 1342 are shown below.

[0229] Refer to FIG. 49. The specialized view for
instances of the audio-file 1340 and the video-file 1342 are

Nov. 1, 2007

shown. These simply accumulate themselves to the topmost
instance of the page 1388 on the stack.

4.14.3 Main Program

[0230] Refer to FIG. 50. The command-line application
1372 is shown. A target directory is plucked from the end of
the command line. An instance of the host 1352 is con-
structed. An instance of the builder 1368 is constructed,
initialized with the host instance. Each remaining command-
line argument specifies a top-level directory from which to
scan; the scans are initiated by invocation of the member
function visit 1376. The host instance is populated in the
course of the scans.

[0231] If the scans have succeeded, an instance of the
writer 1370 is constructed, initialized wth the host instance
and the target directory. The writer instance performs its
traversal from the constructor, so there is no further action
required. The interlinked HTML files and any required
directories are generated below the target directory.

5 Module Processors

[0232] Various processors are provided to realize value
from the meta-module 1016. The processors may be divided
into two broad collections. Processors which write program-
ming language code for compilation, linking, and execution
are designated as elements of the code-generator 1012.
Processors which write documentation for formatting to
presentation-oriented media such as HTML are PDF are
designated as elements of the document-generator 1014.

5.1 Code Generators

[0233] Refer to FIG. 51. The elements of the code-gen-
erator 1012 write programming language code for compi-
lation, linking, and execution. A generator forwards-writer
1390 provides forward-declarations 1392 and typedefs for
use by processors and other components. A generator
classes-writer 1394 provides class-definitions 1396 and
implementations of member functions for constituent
classes of a module. A generator viewer-writer 1398 defines
a base class viewer 1400 which provides useful default
behavior for specialized processors which provide read-only
processing of an application-specific data structure repre-
senting an instantiation of a module. A generator editor-
writer 1402 defines a base class editor 1404 which provides
useful default behavior for speciailized processors which
modify an application-specific data structure representing an
instantiation of a module. A generator acceptors-writer 1406
defines acceptors 1408, including classes which provide a
facility for type-safe processing of generic elements (typi-
cally from markup processing or synthetic-language pars-
ing) to specific elements suitable for accumulation as mem-
ber data in an application-specific data structure. A generator
predicators-writer 1410 defines predicator definitions 1412,
including classes which provide a facility for type-safe
processing of generic attributes (typically from markup
processing or synthetic-language parsing) to specific ele-
ments suitable for accumulation as member data in an
application-specific data structure. A generator factory-
writer 1414 defines a class factory 1416, which provides
type-safe instantiation of specific elements according to
textual tags such as are obtained in markup processing or
synthetic-language parsing. A generator host-writer 1418
defines a class host 1420, which represents an instantiation

US 2007/0256051 Al

of'a module. An instantiation of a module is an application-
specific data structure, the elements of which are instances
of the classes which are the consituents of a module. A
generator reflector-writer 1422 defines a class reflector
1424, which provides run-time representations of genera and
species relationships among classes. A generator auditor-
writer 1426 defines a class auditor 1428, which provides
verification of specified characteristics of an instantiation of
a module.

5.1.1 Forwards Writer

[0234] Refer to FIG. 52, which depicts excerpts of the
output of the forwards-writer 1390 operating on the media-
scanner 1330. The generator forwards-writer 1390 processes
an instance of the module 1028 to generate includes 1430,
forward-declarations 13.92, module-services 1432, and
typedefs 1434 for use by module processors and other
components. The includes 1430 provide include directives
for the template classes which underly compound types
which are used by the specified module. The forward-
declarations 1392 provide a forward class declaration for
each instance of the class 1036. The module-services 1432
provide forward class declarations for module-level proces-
sors according to the module specification. The typedefs
1434 provide convenient type definition for compound types
which are used in the module.

[0235] The forwards-writer 1390 processes an instance of
the module 1028. The root-classes 1132 are visited; for each
visited class, an element of the forward-declarations 1392 is
generated. The members 1038 of the class are visited; the
members in turn dispatch visits to their associated types,
including the type 1226, and, for member functions, the type
1226 for each element of the arguments 1050. Each visited
type may contribute an element to the typedefs 1434 and an
element to the includes 1430. The typedefs 1434 and
includes 1430 are represented by sets in the forwards-writer
1390 so duplicate typedefs and includes are suppressed. The
module-services 1432 are generated according to the speci-
fied module-level elements of the supplied instance of the
module 1028.

5.1.2 Classes Writer

[0236] Refer to FIG. 53, which depicts excerpts of output
from the classes-writer 1394. The generator classes-writer
1394 provides class-definitions 1396 and member-function-
definitions 1436 for constituent classes of a module.

[0237] The classes-writer 1394 processes an instance of
the module 1028. The classes 1030 are visited; for each
visited class, a class definition is accumulated to the class-
definitions 1396 and member function definitions are accu-
mulated to the member-function-definitions 1436. The class
definition incorporates the instance of the genera 1176, if
any, as public base classes. The members 1038 of each class
are visited to generate elements of the class definition and
member function definitions. For each instance of the mem-
ber-datum 1052, a member definition is accumulated to a
collection of member-datum-definitions 1438. Member
function definitions are accumulated to collections of view-
member-access 1440, edit-member-access 1442, reset-mem-
ber-access 1444, and uniform-member-acceptors 1446.
Additional member function definitions are accumulated for
compound member datum; these are accumulated to com-
pound-member-viewers 1448 and compound-member-edi-

Nov. 1, 2007

tors 1450. Where necessary, private access to member data
is provided (e.g., where access to member data is limited by
an acceptor 1260), including friend declarations, as neces-
sary (e.g., where an acceptor 1260 is from a distinct class).
Where necessary, constructor initialization is provided for
member data.

[0238] Where instances of the member-function 1048 are
specified, declarations are accumulated to specified-mem-
ber-functions 1452. If inline or other definitions of the
member functions are specified, they are accumulated in the
specified-member-functions 1452 or in the member-func-
tion-definitions 1436.

[0239] Ifthe auditor-id 1144 is specified, an audit member
function declaration is provided in the class definition, and
a definition is provided which incorporates any specified
audit-requirements 1210. If markup processing is specified,
member function declarations are provided as specified.
[0240] Ifthe viewer-id 1136 is specified, a viewer-dispatch
1454 is declared and defined. If the editor-id 1138 is
specified, an editor dispatch is declared and defined. If the
predicator-id 1158 is specified, dispatch to the generated
predicator and the generated promissary reference is
declared and defined. If the acceptor-id 1156 is specified,
dispatch to the generated acceptor is declared and defined. If
the factory-id 1140 is specified, requests for acceptor and
predicators are declared and defined.

[0241] A reflector-interface 1456 is provided for class
identification at run-time. A constructor and destructor are
provided in a factory 1458. The constructor incorporates any
required initialization of member data. The destructor incor-
porates any required deletion of meron-specified member
data.

5.1.3 Viewer Writer

[0242] Refer to FIG. 54, which depicts output excerpts for
the viewer-writer 1398. The generator viewer-writer 1398
defines a class viewer 1400 which provides useful default
behavior for specialized processors which provide read-only
processing of an application-specific data structure repre-
senting an instantiation of a module.

[0243] The viewer-writer 1398 processes an instance of
the module 1028. The viewer-writer 1398 visits each
instance of the classes 1030. For each visited class, a virtual
view responder is generated, which is accumulated to view-
members 1460. A view-base responder is generated, a dec-
laration of which is accumulated to view-base-members
1462. A view-agg responder is generated, each unique
declaration being accumulated to the view-agg-members
1464.

[0244] Refer to FIG. 55, which depicts additional excerpts
of code generated by the viewer-writer 1398. For each
visited class, the generated element of the view-members
1460 recursively dispatches views to meron members and to
the corresponding generated element of the view-base-
members 1462 The generated element of the view-base-
members 1462 dispatches to the genera of the class. Any
generated element of the view-agg-members 1464 dis-
patches to each contained instance in the compound datum.

5.1.4 Editor Writer

[0245] The processor editor-writer 1402 defines a class
editor 1404, which provides useful default behavior for
specialized processors which modify an application-specific

US 2007/0256051 Al

data structure representing an instantiation of a module. The
editor 1404 generated by the editor-writer 1402 is structur-
ally similar to the class viewer 1400 generated by the
viewer-writer 1398, however the view operations are
replaced by edit operations, and the instance arguments are
not const, since the editor is enabled to make changes to the
data structure.

5.1.5 Acceptors Writer

[0246] The generator acceptors-writer 1406 defines accep-
tors 1408 which provide a facility for type-safe processing
of generic elements (typically from markup processing or
synthetic-language parsing) to specific elements suitable for
accumulation as member data in an application-specific data
structure. The acceptors 1408 include a class base-acceptor
1466, a collection of classes specialized-acceptors 1468, and
a collection of classes acceptor-hosts 1470.

[0247] Refer to FIG. 56, which depicts part of a module
specification, including a specification of an acceptor. A
module 1472 specifies an acceptor 1474. The module 1472
includes a class element 1476, a class item 1478, and a class
channel 1480. The channel 1480 includes a member datum
items 1482, a sequence of instances of the item 1478.
[0248] The base-acceptor 1466 defines a collection of
virtual accept methods, each of which corresponds to a
particular module class. When an instance of the module
1028 specifies an acceptor via the acceptor-id 1156, the
classes-writer 1394 generates, for each particular module
class, a dispatch to the base-acceptor 1466, which in turn
invokes the particular accept method corresponding to the
particular module class.

[0249] Refer to FIG. 57, which depicts excerpts of the
code generated by the acceptors-writer 1406. The acceptors-
writer 1406 generates the acceptor 1474, a base-acceptor
1466, which includes an accept virtual member function for
each class in the module.

[0250] Refer to FIG. 58, which depicts the implementa-
tions of the virtual accept member functions generated by
the acceptors-writer 1406 for the class acceptor 1474. The
acceptors-writer 1406 provides an implementation for each
accept member function which delegates acceptance to each
genus of the argument class, if any. If no genus implemen-
tation accepts the argument, the accept fails.

[0251] Each specialized acceptor class of the collection
specialized-acceptors 1468 corresponds to a particular mem-
ber datum which is capable of accepting a reference datum.
Acceptance capability may be inhibited when direct assign-
ment to the datum is restricted via the inhibit-predicator
1262. In the exemplary embodiment, acceptance capability
is provided for member data for which the type 1226 is
referential, including the reference-type 1068, the reference-
sequence-type 1076, and the reference-set-type 1082. In an
alternate embodiment, acceptance could be generalized to
scalar member data, in which the textual content of the
markup elements would serve as the basis for scanning to
binary scalar values.

[0252] Each specialized acceptor class specializes the
base-acceptor 1466. On instantiation, an instance of the
specialized acceptor class is supplied with a target instance
of the class for which the particular member datum was
specified; the target instance is reserved as a private member
of the specialized acceptor class. Each specialized acceptor
class specializes the particular accept method corresponding
to the acceptance type of the member; for a reference-type

Nov. 1, 2007

1068, the acceptance type corresponds to the reference-
class-id 1284. For compound types, the acceptance type
corresponds to the reference-range 1302 or the reference-
range 1308. The specialized accept method is supplied with
an instance corresponding to the acceptance type; this
instance is then assigned to the particular member datum of
the reserved target instance.

[0253] Refer to FIG. 59, which depicts a specialized
acceptor class generated by the acceptors-writer 1406. The
specialized acceptor class, an element of the specialized-
acceptors 1468, corresponds to the member datum items
1482. The acceptors-writer 1406 generates a specialization
of'the acceptor 1474 for each suitable member datum of each
particular class of the module. For the member datum items
1482, a class channel-items-acceptor 1484 is generated by
the acceptor 1474. The channel-items-acceptor 1484 is ini-
tialized with an instance of the channel 1480, which pro-
vides the target to which instances of the item 1478 may
accumulate. The channel-items-acceptor 1484 specializes
the virtual accept member function of the acceptor 1474 for
the item 1478, corresponding to the acceptance of an
instance of the item 1478 directed to the member datum
items 1482 for the target instance of the channel 1480. The
specialized accept member function invokes an acceptance
member function of the channel 1480 (which is generated by
the classes-writer 1394).

[0254] Each acceptor host class of the collection acceptor-
hosts 1470 provides a mapping from textual tags to accep-
tors, as well as instantiation services mapping textual tags to
module class instances. In a markup processing context, a
generic element may be presented for acceptance in asso-
ciation with a textual tag. Moreover, a textual tag may need
to be related to a member to determine the proper specialized
instantiation of an instance which is to correspond to the
textual tag. An acceptor host class performs these two
functions: instantiate a specialized element in response to a
textual tag in the context of a containing instance, and accept
a generalized element corresponding to a textual tag and
ensure that the generalized element is properly specialized
for assignment to a member datum corresponding to the
textual tag.

[0255] Refer to FIG. 60, which depicts an acceptor-hosts
1470, generated by the acceptors-writer 1406. A class chan-
nel-acceptor-host 1486, generated by the acceptors-writer
1406, provides an acceptor host class for the class channel
1480. The channel-acceptor-host 1486 includes an acceptor
member function, which provides an instance of the accep-
tor 1474 in response to an instance of the channel 1480 and
a textual tag. The textual tag specifies a particular member
datum of the channel 1480. The channel-acceptor-host 1486
includes a member function instantiate 1488, which, in
response to a textual tag, instantiates an appropriate instance
for the member datum corresponding the supplied tag. The
channel-acceptor-host 1486 includes a member function
acceptor 1490, which, in reponse to a target instance of the
channel 1480 and a textual tag, provides an instance of the
acceptor 1474, suitable for assignment to the target instance
of the member datum corresponding to the supplied textual
tag.

[0256] The channel-acceptor-host 1486 includes two static
member functions (class functions), respectively providing
instantiation of an instance of the channel-items-acceptor
1484 and instantiation of an instance of the item 1478. The

US 2007/0256051 Al

channel-acceptor-host 1486 defines two index maps, respec-
tively mapping from textual tags corresponding to member
data to class functions.

[0257] Refer to FIG. 61, which depicts the implementa-
tions of member functions for the channel-acceptor-host
1486, generated by the acceptors-writer 1406. A constructor
provides initialization of the index maps which associate
textual tags with class functions providing acceptors and
instantiators, respectively. The sole member datum for the
channel 1480 is the items 1482, so there is only one
initialization per table. More generally, where there are
multiple member data, there are several initializations for
each table.

[0258] The generated implementation of the member
function acceptor 1490 is also shown in FIG. 61. An
acceptor provider is sought from the acceptor index map,
corresponding to the supplied tag. If an acceptor provider is
obtained, it is invoked with the supplied target instance of
the channel 1480. Otherwise a zero pointer is returned to
indicate failure.

[0259] The generated implementation of the member
function instantiate 1488 is also shown in FIG. 61. An
instantiator is sought from the instantiator index map, cor-
responding to the supplied tag. If an instantiator is obtained,
it is invoked. Otherwise a zero pointer is returned to indicate
failure.

[0260] Referto FIG. 62, which illustrates some excerpts of
the class element 1476 and the class channel 1480.- The
element 1476 includes an accept-element member function,
which is provided with a textual tag and an instance of the
element 1476. The accept-element member function is not
generated; it must be provided by the developer. The accept-
element member function is considered below.

[0261] The element 1476 further includes generated vir-
tual member functions for dispatching to an acceptor and for
requesting an acceptor. The channel 1480 specializes those
dispatch methods, dispatching them to the supplied factory
instance, which will be considered below. The channel 1480
also provides the accept member function which accumu-
lates a supplied instance of the item 1478 to the items 1482.
[0262] Refer to FIG. 63, which depicts the accept-element
member function, which is not generated but must be
provided by the developer. The member function requests an
instance of the acceptor 1474, which, if obtained, is dis-
patched to the element which is a candidate for acceptence.
Ifthe dispatch succeeds, the element was accepted. Note that
this general mechanism uses generic classes such as the
element 1476 and the acceptor 1474. Specific situations such
as an instance of the item 1478 provided to an instance of the
channel 1480 using the tag “item” will be correctly handled
by this mechanism, without any need for casting or switch-
ing. Moreover, the addition of new members and tags and
even new module classes does not require any additional
coding by the developer; the generated code will expand to
permit this generic mechanism to handle the specific situa-
tions.

5.1.6 Predicators Writer

[0263] The processor predicators-writer 1410 provides
predicator definitions 1412 which collectively provide a
facility for type-safe processing of textual attributes or
predicates (typically from markup processing or synthetic-
language parsing) to specific elements suitable for accumu-
lation as member data in an application-specific data struc-

Nov. 1, 2007

ture. The predicators-writer 1410 processes an instance of
the module 1028, visiting contained instances of the class
1036, the member-datum 1052, and associated instances of
the type 1054. A predicate relation specifies a textual tag
which may correspond to a textual element from the tags
1264 of an instance of the member-datum 1052. The predi-
cate complements may specify the value or instance to be
assigned to the corresponding member datum. A particular
textual tag may occur in more than one instance of the
member-datum 1052; this is acceptible if the classes that
specify the member data corresponding to the shared tag are
distinct.

[0264] There are three distinct cases for processing by the
predicators-writer 1410, according to the specifics of the
member datum to which the predicate or attribute is directed.
The simplest case is scalar member data, where the type
1226 corresponds to the value-type 1058, the value-se-
quence-type 1074, and the value-set-type 1080. In this case,
textual data may require scanning to a binary value, fol-
lowed by assignment to a particular member datum. In the
second case, corresponding to meron member data, with the
type 1226 corresponding to the reference-type 1068, the
reference-sequence-type 1076, and the reference-set-type
1082, an instance of the specified type is instantiated, an
identifier is assigned as necessary, and the newly instantiated
element is assigned to the particular member datum. In the
third case, corresponding to non-meron member data with
the type 1226 corresponding to the reference-type 1068, the
reference-sequence-type 1076, and the reference-set-type
1082, any textual complement is assumed to refer to an
identifier corresponding to an instance of the correct type.
However the reference instance may not yet be instantiated,
s0 a promissary reference is created, in which the resolution
of the reference is deferred. At a later time, typically when
parsing or markup processing is complete, promissary ref-
erences are redeemed with resolution to instances, and
member data is assigned.

[0265] The predicators-writer 1410 generates predicator
base class definitions 1492, which are classes that permit
generic manipulation of textual data in the early phases of
predicate processing. The predicators-writer 1410 generates
generic predicator apply operations 1494, which are virtual
member functions of the base predicator of the predicator
base class definitions 1492. The generic predicator apply
operations 1494 are invoked by specific target instances
which are to receive a member assignment specified by a
textual relation and optional complements. The predicators-
writer 1410 generates predicator specializations 1496, which
are classes that specialize the predicator base class defini-
tions 1492. An element of the predicator specializations
1496 is generated for each unique occurence of a particular
tag from the tags 1264. Each clement of the predicator
specializations 1496 includes one or more elements of a
collection of specific predicator apply operations 1498. Each
element of the specific predicator apply operations 1498 is
a member function corresponding to a particular class,
where the instance of the class serves as a target to which a
member datum is to be assigned. Each element of the
specific predicator apply operations 1498 specializes an
element of the generic predicator apply operations 1494.

[0266] The predicators-writer 1410 also generates a prom-
issary reference base class definition 1500, a base class that
permits generic manipulation of textual references, the reso-
Iution of which is deferred from the processing of the

US 2007/0256051 Al

attribute or predicate. The promissary reference base class
definition 1500 includes a collection of generic promissary
acceptor operations 1502, each of which is a virtual member
function, one per instance of the class 1036, corresponding
to the redemption of a promissary reference. The promissary
reference base class definition 1500 is complemented by a
collection of promissary reference definition 1504, corre-
sponding to each instance of the member-datum 1052, as
necessary. Each element of the promissary reference defi-
nition 1504 provides an element of a collection of specific
promissary acceptor operations 1506, each of which spe-
cializes one of the generic promissary acceptor operations
1502, in which an instance corresponding to a resolved
reference is accepted as member data.

[0267] Refer to FIG. 64, which depicts excerpts from the
class predicator 1508 and several specializations, collec-
tively predicator base class definitions 1492, generated by
the processor predicators-writer 1410. The predicator 1508
includes generic predicator apply operations 1494, each of
which is a virtual member function corresponding to a
particular class of the module. Only a representative few of
these are shown in the Fig. The virtual apply indicates the
application of a predicate to a target element. Particular
predicators specialize the predicator 1508 and specific predi-
cator apply operations 1498, which specialize the apply
member function corresponding to the particular classes to
which the predicates are applicable.

[0268] Predicators are characterized according to plurality
of complements. The class predicator-qualifier 1510, spe-
cializing the predicator 1508, does not accept any comple-
ments. The class predicator-singleton 1512, specializing the
predicator 1508, represents a predicate accepting a single
complement. The class predicator-plurality 1514, specializ-
ing the predicator 1508, represents a predicate accepting
multiple complements.

[0269] Refer to FIG. 65, which depicts examples of predi-
cator specializations 1496. The simplest predicate applica-
tion is illustrated by a class qualifier 1516, which demon-
strates a value predicator specialization 1518. The particular
example from the collection of specific predicator apply
operations 1498 is provided by a value specific predicator
apply operation 1520, in which the boolean member datum
is reset.

[0270] A class meron-predicator 1522 depicts the slightly
more elaborate response to a meron reference predicate,
which demonstrates an instantiating predicator specializa-
tion 1524. In an instantiating specific predicator apply
operation 1526, another example of the specific predicator
apply operations 1498, an instance of the host-class 1040 is
constructed, the identifer of the instance is set from the
predicate complement, and the newly constructed instance is
offered to the target, an instance of the module 1028.
[0271] Refer to FIG. 66, which depicts a generated class
promissary-reference 1528, exemplary of the promissary
reference base class definition 1500. The promissary-refer-
ence 1528 is initialized with a tag, identifier, and source, all
which are textual. The tag represents the predicate relation.
The identifier represents the reference element. The source
provides additional information for reporting errors. The
promissary-reference 1528 includes a member function
promissary resolve operation 1530, in which the host
resolver is provided with the identifier, potentially obtaining
a generic element. If an element is obtained, a resolution
notification is dispatched to the element, which, if success-

Nov. 1, 2007

ful, will result in the invocation of a properly specialized
invocation of an accept member function. The promissary-
reference 1528 includes a collection of generic promissary
acceptor operations 1502, each of which is a virtual accept
member function corresponding to a class of the the module,
of which only one particular member function is shown in
the figure.

[0272] Referto FIG. 67, which depicts elements generated
by the predicators-writer 1410 and other processors in
support of promissary references. The generated class mem-
ber-function 1048 includes a specialization of a promissary
dispatch 1532, to which it responds with an invocation of the
corresponding element of the generic promissary acceptor
operations 1502 of the promissary-reference 1528. A suit-
ably specialized virtual accept member function, an element
of the specific promissary acceptor operations 1506, is
provided in the class promissary-reference 1534, which
specializes the promissary-reference 1528. In the specialized
accept member function, the supplied instance of the mem-
ber-function 1048 is finally assigned to the target, in this
case, the member datum acceptor 1260 of the class member-
datum 1052.

[0273] A class acceptor-singleton 1536, specializing the
predicator-singleton 1512, provides a promissary predicator
specialization 1538. In the supplied element of the specific
predicator apply operations 1498, a promissary specific
predicator apply operation 1540 is supplied. The target
instance of the member-datum 1052 is used to instantiate a
promissary-reference 1534. Also supplied in the instantia-
tion is a complement, which provides the identifier, for
which resolution is deferred. The newly instantiated prom-
issary reference is deposited in the host, where it will be held
until resolution is initiated, presumably at the conclusion of
parsing.

5.1.7 Factory Writer

[0274] The processor factory-writer 1414 processes an
instance of the module 1028 to define a class factory 1416,
which provides type-safe instantiation of specific elements
according to textual tags such as are obtained in markup
processing or synthetic-language parsing.

[0275] Refer to FIG. 68, which depicts an excerpt of the
class factory 1542 generated by the factory-writer 1414. The
factory-writer 1414 is exemplary of the factory 1416. A
constructor is generated to provide initialization of the
member data. Two instantiators 1544 are provided; one is
context-independent, accepting a textual argument corre-
sponding to the tag for a class in the module. The other
instantate member function is context-sensitive. The context
is provided by the supplied instance of the element 1476.
The supplied tag may then specify a member datum or a
class.

[0276] The factory 1542 provides acceptors on request,
corresponding to specific contexts; a specific context is
provided by a species of the generic element 1476. The
provision of acceptors is mediated by a collection of accep-
tor-responders 1546 member functions, one for each par-
ticular instance of the class 1036 from the classes 1030. The
factory 1542 provides context-instantiator-responders 1548
on request, corresponding to specific contexts; a specific
context is provided by a species of the generic element 1476.
A collection acceptor-host-members 1550 of members are
provided, one for each particular instance of the class 1036
from the classes 1030. The members correspond to the

US 2007/0256051 Al

acceptor-hosts 1470 generated by the acceptors-writer 1406,
of which the channel-acceptor-host 1486 is exemplary.

[0277] A collection of static-instantiators 1552 is pro-
vided, each of which provides instantiation for a particular
instance of the class 1036 from the classes 1030, except
where the particular instance of the class 1036 corresponds
to a pure abstract class. A pure abstract class defines or
inherits without intervening specialization a pure virtual
member function. An instantiator-map-member 1554 pro-
vides an association of elements of the static-instantiators
1552 to textual tags. The textual tags correspond to the tags
1206 of the particular instance of the class 1036 correspond-
ing to the associated element of the static-instantiators 1552.

[0278] Refer to FIG. 69, which depicts implementation of
some member functions for the class factory 1542, as
generated by the factory-writer 1414. The constructor uses a
collection of instantiator-map-initializers 1556, which col-
lectively intialize the mapping from tags to elements of the
static-instantiators 1552. The context-independent instantia-
tor of the instantiators 1544 maps the tag to an element of the
static-instantiators 1552, which, if obtained, is invoked. The
context-sensitive instantiator of the instantiators 1544 dis-
patches a generic request for instantiation to the context
element. The generic request is specialized in the particular
class of the context element, resulting in invocation of a
particular element of the context-instantiator-responders
1548.

5.1.8 Host Writer

[0279] The processor host-writer 1418 processes an
instance of the module 1028 to define the class host 1018,
which represents an instantiation of the processed module.
An instantiation of a module is an application-specific
object-oriented data structure, the elements of which are
instances of the classes 1030 of the module instance. The
host-writer 1418 may also generate definitions for support
classes, including a resolver 1558 and a depository 1560.
The generated resolver 1558 provides an association
between textual identifiers and instances. The generated
depository 1560 caches and eventually redeems instances of
the promissary reference base class definition 1500.

[0280] Referto FIG. 70, which depicts class definitions for
a resolver 1558 and a depository 1560, generated by the
host-writer 1418. The resolver 1558 is exemplified by gen-
erated class resolver 1562, specializing the editor 1564. The
resolver 1562 provides an edit member function responsive
to instances of the entity 1026, which is specified as the
resolver root, via the member datum resolver-root-id 1154.
The edit member function associates the value of the mem-
ber datum id 1106 with the particular instance of the entity
1026. The id 1106 is specified as the resolver identifier field,
via the member datum resolver-id-field 1152. The resolver
1562 provides const and non-const resolve methods for
determining the associated instance of the entity 1026 for a
particular identifier. The resolver 1562 includes an index
member which maintains the mapping from textual identi-
fiers to instances of the entity 1026.

[0281] The depository 1560 is supplied by a generated
class depository 1566, which accepts instances of the prom-
issary-reference 1528, for later redemption. Redemption of
promissary references is obtain upon invocation of a redeem
member function. Resolution is requested for each deposited
promissary reference.

Nov. 1, 2007

[0282] Refer to FIG. 71. The host-writer 1418 visits the
members 1038 of the instance of the host 1034 to determine
client-member-data 1568 and client-member-functions
1570, which are member data and functions, respectively,
specified in module scope. The host-writer 1418 uses ele-
ments of the classes-writer 1394 to generate supporting
member functions for the client-member-data 1568. Addi-
tional module-member-data 1572 are generated from mod-
ule predicate specifications. The module-member-data 1572
members generated for a host may include an predicator, a
depository for promissary references, a resolver, a factory, a
reflector, and an acceptor. The client-member-data 1568 are
at the discretion of the developer. The module-member-data
1572 are, generated at the request of the developer, but the
member characteristics are provided by the generator. The
host-writer 1418 generates member-access 1574 elements,
including member functions which provide access to the
client-member-data 1568 and the module-member-data
1572. The host-writer 1418 generates factory 1576 clements,
including a constructor with initializers for member data, as
necessary, and a destructor with deletion of meron member
data.

5.1.9 Reflector Writer

[0283] The processor reflector-writer 1422 processes an
instance of the module 1028 to generate a class reflector
1424 which provides run-time representations of genera and
species relationships among classes. Such relationships are
explicit at compile time, but at run time they are implicit and
not immediately accessible to computations. Most compu-
tations do not require explicit access to these relationships
but in some computational contexts they are very useful. The
reflector-writer 1422 visits the instances of the classes 1030
for the supplied instance of the module 1028, processing the
species 1180 to construct an explicit representation of the
genera and species relationships.

[0284] Refer to FIG. 72, which depicts the generated class
reflector 1578, a reflector 1424, generated by the processor
reflector-writer 1422. The reflector 1578 provides various
representations of species and genera relationships amongst
the classes in a module. These relationships are presenting
using textual identifiers for classes, since, at least in C++,
classes do not have an explicit run-time representation.
Among the elements generated for module classes are
textual identifiers, which are available as static functions
organized by class and as virtual member functions available
from particular instances. These textual identifiers include
the formal class identifier id 1106, as well as optional
additional tags specified by the developer.

[0285] The reflector-writer 1422 generates factory-ser-
vices 1580, including constructor and destructor elements.
The generated class reflector 1578 provides id-services
1582, including a mapping from identifiers to canonical
identifiers. Identifiers include tags (elements of the tags
1206) and formal class identifiers (the id 1106). Canonical
identifiers are always formal class identifiers. The reflector
1578 provides a validation which indicates whether a can-
didate identifier is recognized.

[0286] The generated class reflector 1578 provides set-
services 1584 and sequence-services 1586 to represent gen-
era and species relationships. The reflector 1578 provides
immediate species and genera as well as the resursive
closure of species and genera (i.e. children, parents, descen-
dents, and ancestors). Set representations are useful for

US 2007/0256051 Al

efficient testing of membership of a first class amongst the
species or genera of a second class. Sequence representa-
tions are useful for scanning, especially genera; the ordering
of'the sequence is from most specific to most generic, which
is the typical order used, e.g. at compile-time, to resolve
names in a class scope.

[0287] The generated class reflector 1578 provides an
empty set, lacking any identifiers, and a universal set,
including all the canonical identifiers for the classes in a
module. The reflector 1578 provides the set of immediate
species and the closure set of species for a class represented
by an identifier. The closure set of species is the recursive
closure of species; i.e. all specializations. The reflector 1578
provides the set of immediate genera and the closure set of
genera for a class represented by an identifier. The closure
set of genera is the recursive closure of genera; i.e. all
generalizations.

[0288] The reflector-writer 1422 generates member-data
1588 which explicitly represents genera and species rela-
tionships. The generated class reflector 1578 provides an
empty sequence, lacking any identifiers, and a universal
sequence, including all the canonical identifiers for the
classes in a module. The reflector 1578 provides the
sequence of immediate species and the closure sequence of
species for a class represented by an identifier. The reflector
1578 provides the sequence of immediate genera and the
closure sequence of genera for a class represented by an
identifier.

[0289] Referto FIG. 73, which depicts an excerpt from the
constructor of the reflector 1578, generated by the reflector-
writer 1422. The generated constructor is an element of the
factory-services 1580; the member-data 1588 is initialized in
the constructor. The reflector-writer 1422 visits the genera
from most general to least general, ensuring that all of a
class’s genera have been visited before the class is visited.
For each class, a genera set and sequence and a genera
closure set and sequence are created. For each genus class,
the genera set is augmented with the genus class. The genera
closure set is augmented with the genera closure set of the
genus class. The genera sequence and the genera closure
sequence are augmented with the genus class. The genera
closure sequence is augmented with the genera closure
sequence of the genus class. The genera closure set is
augmented with the genera set.

[0290] Referto FIG. 74, which depicts an excerpt from the
constructor of the reflector 1578, generated by the reflector-
writer 1422. The reflector-writer 1422 visits the species from
most specific to least specific, ensuring that all of a class’s
species are visited before the class is visited. For each class,
a species set and sequence and a species closure set and
sequence are created. For each species class, the species set
is augmented with the species class. The species closure set
is augmented with the species closure set of the species
class. The species sequence and the species closure sequence
are augmented with the species class. The species closure
sequence is augmented with the species closure sequence of
the species class.

5.1.10 Auditor Writer

[0291] The processor auditor-writer 1426 processes an
instance of the module 1028 to generate a class auditor 1428
which provides verification of specified characteristics of an
instantiation of a module. The developer may specify an
audit processor for a module via the member datum auditor-

Nov. 1, 2007

id 1144 of the class module 1028. The developer may
specify boolean requirements for a specified class via the
member datum audit-requirements 1210 of the class class
1036. The auditor-writer 1426 visits the supplied instance of
the module 1028 and the instances of the classes 1030.

[0292] Refer to FIG. 75, which depicts a class auditor
1590, an auditor 1428, generated by the auditor-writer 1426.
The auditor 1590 specializes the viewer 1592, indicating
that it views but does not edit the application-specific data
structure. The auditor 1590 is initialized with a logger,
which facilitates meaningful error messages. The developer
may specify a logging-context 1594 via the member datum
auditor-context 1214 of the class class 1036.

[0293] The auditor-writer 1426 generates a collection
views 1596, each a member function specializing a view
member function of the viewer 1592. An element of the
views 1596 is generated for each class with specified audit
requirements. An exemplary member function of the views
1596 is shown for the class entity-1026. The generated
member function creates a logging context, invokes the
audit member function of the entity 1026 (generated by the
classes-writer 1394, see below), and, if the audit is success-
ful, delegates the view to the default for the base class
viewer 1592, which in turn recursively dispatches views for
the meron member data of the entity 1026, if any.

[0294] The classes-writer 1394 generates a collection
audits 1598, each a member function corresponding to an
instance of the class 1036. An exemplary member function
of the audits 1598 is also depicted. Each element of the
audit-requirements 1210 generates a code seqment, in which
the requirement is evaluated, and, if the evaluation fails, a
message is logged and failure is returned. If all the require-
ments are met, the audit succeeds.

5.2 Documentation Generators

[0295] Refer to FIG. 76. Elements of the document-
generator 1014 variously process an instance of the module
1028 to produce catalog, description, figures, and vocabu-
lary corresponding to the module instance. The document-
generator 1014 includes a generator catalog-writer 1600,
which defines a comprehensive parts list (catalog) for the
constituents of a module. The document-generator 1014
includes a generator description-writer 1602 which provides
a textual description of the constituents of a module. The
document-generator 1014 includes a generator figures-
writer 1604, which provides graphical depictions of the
constituents of a module. The document-generator 1014
includes a generator vocabulary-writer 1606, which pro-
vides a comprehensive listing of textual terms representing
the constituents of a module.

5.2.1 Catalog Writer

[0296] The processor catalog-writer 1600 produces a cata-
log 1608 from the constituents of an instance of the module
1028. The catalog-writer 1600 specializes the viewer 1592.
The catalog-writer 1600 processes an instance of the module
1028. The catalog-writer 1600 visits classes and members,
generating a part element for each visited instance. Each
generated part element includes a textual identifier, a cat-

egory (e.g., “class”, “member-datum”, etc), a term (suitable
for use in the body of a document), and a handle (suitable for

US 2007/0256051 Al

use in the figures of a document). The collection of gener-
ated part elements provides a catalog.

5.2.2 Description Writer

[0297] The processor description-writer 1602 generates
description 1610, including textual descriptions of the con-
stituents of a module. The description-writer 1602 special-
izes the viewer 1592. The description-writer 1602 processes
a supplied instance of the module 1028. The description-
writer 1602 visits classes and members. A summary descrip-
tion of the contained classes is generated. The summary
description of each contained class includes the purpose
1112, if any. A detailed description is also provided for each
module, including a description of module-level generated
classes, such as the host, viewer, editor, factory, etc.
[0298] The description-writer 1602 visits each instance of
the class 1036. For ecach class, an overview is generated
which describes the purpose 1112 of the class (if any), the
genera 1176 of the class (if any), the members of the class
(if any), incorporating the purpose 1112 for each member, if
any. The class overview also incorporates any remarks 1116
or notes 1118. The overview also describes the species 1180
of the class (if any).

[0299] The description-writer 1602 visits each instance of
the member 1046. For each member datum, a paragraph is
generated which describes the type of the member datum,
the purpose 1112 of the member datum (if any), and any
remarks 1116 or notes 1118. Any specified acceptor for the
member datum is also described. For each member function,
a paragraph is generated which describes the return type of
the member function, the arguments of the member function
(if any), the purpose 1112 of the member function (if any),
and any remarks 1116 or notes 1118.

5.2.3 Figures Writer

[0300] The processor figures-writer 1604 generates FIGS.
1612, including graphical depictions of the constituents of a
module. The figures-writer 1604 specializes the viewer
1592. The figures-writer 1604 processes a supplied instance
of the module 1028. The figures-writer 1604 visits classes
and members. The figures-writer 1604 provides a figure
which depicts the supplied module (using the synthetic
language of the parser 1008), including module predicates,
module-scope members (i.e. host members), and root
classes.

[0301] For each instance of the class 1036, the figures-
writer 1604 depicts class predicates, members of the class
and species of the class.

[0302] For each instance of the member-datum 1052, the
figures-writer 1604 depicts the type, the scope handle, and
predicates for the datum.

[0303] For each instance of the member-function 1048 the
figures-writer 1604 depicts the return type, the scope handle,
the argument list, and predicates for the member function.

5.2.4 Vocabulary Writer

[0304] The processor vocabulary-writer 1606 generates a
vocabulary 1614, including a comprehensive listing of tex-
tual terms representing the constituents of a module. The
vocabulary-writer 1606 specializes the viewer 1592. The
vocabulary-writer 1606 visits each instance of the entity
1026. For each entity, if the term 1108 is non-empty, a

Nov. 1, 2007

vocabulary entry is generated which incorporates the term
and a brief description incorporating the purpose 1112 of the
entity.

I claim:

1. A computer-implemented method of processing a mod-
ule specification to produce predicator definitions, compris-
ing the steps of:

viewing a module, said module included in said module

specification,

providing a predicator base class definition, said predi-
cator base class definition included in said predicator
definitions, and said predicator base class definition
including a plurality of generic predicator apply
operations,

providing a promissary reference base class definition,
said promissary reference base class definition
included in said predicate definitions, said promis-
sary reference base class definition including a
resolve operation, and said promissary reference
base class definition including a plurality of generic
promissary acceptor operations,

dispatching a plurality of categorical classes, said cat-
egorical classes included in said module;

viewing a categorical class, said categorical class

included in said categorical classes,
accumulating a generic predicator apply operation cor-
responding to said categorical class to said generic
predicator apply operations,
accumulating a generic promissary acceptor operation
corresponding to said categorical class to said
generic promissary acceptor operations,
providing a promissary dispatch in a categorical class
definition corresponding to said categorical class,
said dispatch in turn dispatching to said generic
promissary acceptor operation,
dispatching a plurality of class members, said class
members included in said categorical class; and
viewing a datum, said datum included in said class
members,
dispatching a view to a datum type, said datum type
associated with said datum,
receiving a value type,
providing a value predicator specialization corre-
sponding to said value type for said datum, said
value predicator specialization deriving from
said predicator base class definition, and said
value predicator specialization including a
value specific predicator apply operation, cor-
responding to said generic predicator apply
operation, and
accumulating said value predicator specialization
to a plurality of predicator specializations, said
predicator specializations included in said
predicator definitions,
receiving a reference type,
testing for a meron qualification, said meron quali-
fication included in said datum,
according to the success of said test for said
meron qualification,
providing an instantiating predicator specializa-
tion, corresponding to said reference type for
said datum, said instantiating predicator spe-
cialization deriving from said predicator base
class definition, and said instantiating predica-

US 2007/0256051 Al

tor specialization including an instantiating spe-
cific predicator apply operation, corresponding
to said generic predicator apply operation, and
and accumulating said instantiating predicator
specialization to said predicator specializations,
according to the failure of said test for said
meron qualification,

providing a promissary predicator specializa-
tion, corresponding to said reference type for
said datum, said promissary predicator special-
ization deriving from said predicator base class
definition, said promissary predicator special-
ization including a promissary specific predica-
tor apply operation, corresponding to said
generic predicator apply operation,

23

Nov. 1, 2007

accumulating said promissary predicator spe-
cialization to said predicator specializations,
writing a promissary reference definition, said
promissary reference definition deriving from
said promissary reference base class definition,
said promissary reference definition including a
specific promissary acceptor operation, and said
specific promissary acceptor operation corre-
sponding to said generic promissary acceptor
operation, and

accumulating said promissary reference defini-
tion to a plurality of promissary reference defi-
nitions, said promissary reference definitions
included in said predicator definitions.

#* #* #* #* #*

